Approximating the MaxCover Problem with Bounded Frequencies in FPT Time
نویسندگان
چکیده
We study approximation algorithms for several variants of the MaxCover problem, with the focus on algorithms that run in FPT time. In the MaxCover problem we are given a set N of elements, a family S of subsets of N , and an integer K. The goal is to find up to K sets from S that jointly cover (i.e., include) as many elements as possible. This problem is well-known to be NP-hard and, under standard complexitytheoretic assumptions, the best possible polynomial-time approximation algorithm has approximation ratio (1 − 1e ). We first consider a variant of MaxCover with bounded element frequencies, i.e., a variant where there is a constant p such that each element belongs to at most p sets in S. For this case we show that there is an FPT approximation scheme (i.e., for each β there is a β-approximation algorithm running in FPT time) for the problem of maximizing the number of covered elements, and a randomized FPT approximation scheme for the problem of minimizing the number of elements left uncovered (we take K to be the parameter). Then, for the case where there is a constant p such that each element belongs to at least p sets from S, we show that the standard greedy approximation algorithm achieves approximation ratio exactly 1− e. We conclude by considering an unrestricted variant of MaxCover, and show approximation algorithms that run in exponential time and combine an exact algorithm with a greedy approximation. Some of our results improve currently known results for MaxVertexCover.
منابع مشابه
Fully Proportional Representation with Approval Ballots: Approximating the MaxCover Problem with Bounded Frequencies in FPT Time
We consider the problem of winner determination under Chamberlin–Courant’s multiwinner voting rule with approval utilities. This problem is equivalent to the wellknown NP-complete MaxCover problem (i.e., a version of the SetCover problem where we aim to cover as many elements as possible) and, so, the best polynomial-time approximation algorithm for it has approximation ratio 1 − 1 e . We show ...
متن کاملChamberlin-Courant Rule with Approval Ballots: Approximating the MaxCover Problem with Bounded Frequencies in FPT Time
We consider the problem of winner determination under Chamberlin–Courant’s multiwinner voting rule with approval utilities. This problem is equivalent to the well-known NP-complete MaxCover problem and, so, the best polynomial-time approximation algorithm for it has approximation ratio 1−1/e. We show exponential-time/FPT approximation algorithms that, on one hand, achieve arbitrarily good appro...
متن کاملOn the Parameterized Complexity of Approximating Dominating Set
We study the parameterized complexity of approximating the k-Dominating Set (DomSet) problem where an integer k and a graph G on n vertices are given as input, and the goal is to find a dominating set of size at most F(k) · k whenever the graph G has a dominating set of size k. When such an algorithm runs in time T(k) · poly(n) (i.e., FPT-time) for some computable function T, it is said to be a...
متن کاملDefensive Alliances in Graphs of Bounded Treewidth
A set S of vertices of a graph is a defensive alliance if, for each element of S, the majority of its neighbors is in S. The problem of finding a defensive alliance of minimum size in a given graph is NP-hard and there are polynomial-time algorithms if certain parameters are bounded by a fixed constant. In particular, fixed-parameter tractability results have been obtained for some structural p...
متن کاملParametrized Complexity of Length-Bounded Cuts and Multi-cuts
We show that theMinimal Length-Bounded L-But problem can be computed in linear time with respect to L and the tree-width of the input graph as parameters. In this problem the task is to find a set of edges of a graph such that after removal of this set, the shortest path between two prescribed vertices is at least L long. We derive an FPT algorithm for a more general multi-commodity length boun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1309.4405 شماره
صفحات -
تاریخ انتشار 2013