Extracellular norepinephrine, norepinephrine receptor and transporter protein and mRNA levels are differentially altered in the developing rat brain due to dietary iron deficiency and manganese exposure.
نویسندگان
چکیده
Manganese (Mn) is an essential trace element, but overexposure is characterized by Parkinson's like symptoms in extreme cases. Previous studies have shown that Mn accumulation is exacerbated by dietary iron deficiency (ID) and disturbances in norepinephrine (NE) have been reported. Because behaviors associated with Mn neurotoxicity are complex, the goal of this study was to examine the effects of Mn exposure and ID-associated Mn accumulation on NE uptake in synaptosomes, extracellular NE concentrations, and expression of NE transport and receptor proteins. Sprague-Dawley rats were assigned to four dietary groups: control (CN; 35 mg Fe/kg diet), iron-deficient (ID; 6 mg Fe/kg diet), CN with Mn exposure (via the drinking water; 1 g Mn/L) (CNMn), and ID with Mn (IDMn). (3)H-NE uptake decreased significantly (R=-0.753, p=0.001) with increased Mn concentration in the locus coeruleus, while decreased Fe was associated with decreased uptake of (3)H-NE in the caudate putamen (R=0.436, p=0.033) and locus coeruleus (R=0.86; p<0.001). Extracellular concentrations of NE in the caudate putamen were significantly decreased in response to Mn exposure and ID (p<0.001). A diverse response of Mn exposure and ID was observed on mRNA and protein expression of NE transporter (NET) and alpha(2) adrenergic receptor. For example, elevated brain Mn and decreased Fe caused an approximate 50% decrease in NET and alpha(2) adrenergic receptor protein expression in several brain regions, with reductions in mRNA expression also observed. These data suggest that Mn exposure results in a decrease in NE uptake and extracellular NE concentrations via altered expression of transport and receptor proteins.
منابع مشابه
Manganese exposure alters extracellular GABA, GABA receptor and transporter protein and mRNA levels in the developing rat brain.
Unlike other essential trace elements (e.g., zinc and iron) it is the toxicity of manganese (Mn) that is more common in human populations than its deficiency. Data suggest alterations in dopamine biology may drive the effects associated with Mn neurotoxicity, though recently gamma-aminobutyric acid (GABA) has been implicated. In addition, iron deficiency (ID), a common nutritional problem, may ...
متن کاملA manganese-enhanced diet alters brain metals and transporters in the developing rat.
Manganese (Mn) neurotoxicity in adults can result in psychological and neurological disturbances similar to Parkinson's disease, including extrapyramidal motor system defects and altered behaviors. However, virtually nothing is known regarding excess Mn accumulation during central nervous system development. Developing rats were exposed to a diet high in Mn via maternal milk during lactation (P...
متن کاملGlobus pallidus: a target brain region for divalent metal accumulation associated with dietary iron deficiency.
Recently, iron deficiency has been connected with a heterogeneous accumulation of manganese in the rat brain. The striatum is particularly vulnerable, for there is a significant negative correlation between accumulated manganese and gamma-aminobutyric acid levels. The effect of dietary iron deficiency on the distribution of zinc and copper, two other divalent metals with essential neurobiologic...
متن کاملIron-Responsive Olfactory Uptake of Manganese Improves Motor Function Deficits Associated with Iron Deficiency
Iron-responsive manganese uptake is increased in iron-deficient rats, suggesting that toxicity related to manganese exposure could be modified by iron status. To explore possible interactions, the distribution of intranasally-instilled manganese in control and iron-deficient rat brain was characterized by quantitative image analysis using T1-weighted magnetic resonance imaging (MRI). Manganese ...
متن کاملManganese exposure inhibits the clearance of extracellular GABA and influences taurine homeostasis in the striatum of developing rats.
Manganese (Mn) accumulation in the brain has been shown to alter the neurochemistry of the basal ganglia. Mn-induced alterations in dopamine biology are fairly well understood, but recently more evidence has emerged characterizing the role of γ-aminobutyric acid (GABA) in this dysfunction. The purpose of this study was to determine if the previously observed Mn-induced increase in extracellular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 1281 شماره
صفحات -
تاریخ انتشار 2009