On the asymptotic analysis of the Dirac-Maxwell system in the nonrelativistic limit

نویسندگان

  • Philippe Bechouche
  • Norbert J. Mauser
چکیده

We deal with the “nonrelativistic limit”, i.e. the limit c → ∞, where c is the speed of light, of the nonlinear PDE system obtained by coupling the Dirac equation for a 4-spinor to the Maxwell equations for the self-consistent field created by the “moving charge” of the spinor. This limit, sometimes also called “Post-Newtonian” limit, yields a SchrödingerPoisson system, where the spin and the magnetic field no longer appear. However, our splitting of the 4-spinor into two 2-spinors preserves the symmetry of “electrons” and “positrons”; the latter obeying a Schrödinger equation with “negative mass” in the limit. We rigorously prove that in the nonrelativistic limit solutions of the Dirac-Maxwell system on R converge in the energy space C([0, T ];H) to solutions of a SchrödingerPoisson system, under appropriate (convergence) conditions on the initial data. We also prove that the time interval of existence of local solutions of Dirac-Maxwell is bounded from below by log(c). In fact, for this result we only require uniform H bounds on the initial data, not convergence. Our key technique is “null form estimates”, extending the work of Klainerman and Machedon and our previous work on the nonrelativistic limit of the Klein-Gordon-Maxwell system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ترکش گلوئون به چارمونیوم برداری J/psi با در نظر گرفتن اثر تابع موج مزون

Studying the production or decay processes of heavy quarkonia (the bound state of heavy quark-antiquark) is a powerful tool to test our understanding of strong interaction dynamics and QCD theory. Fragmentation is the dominant production mechanism for heavy quarkonia with large transverse momentum. The fragmentation refers to the production process of a parton with high transverse momentum whic...

متن کامل

An efficient and stable numerical method for the Maxwell–Dirac system

In this paper, we present an explicit, unconditionally stable and accurate numerical method for the Maxwell–Dirac system (MD) and use it to study dynamics of MD. As preparatory steps, we take the three-dimensional (3D) Maxwell– Dirac system, scale it to obtain a two-parameter model and review plane wave solution of free MD. Then we present a time-splitting spectral method (TSSP) for MD. The key...

متن کامل

A time-splitting spectral scheme for the Maxwell–Dirac system

We present a time-splitting spectral scheme for the Maxwell–Dirac system and similar time-splitting methods for the corresponding asymptotic problems in the semi-classical and the non-relativistic regimes. The scheme for the Maxwell– Dirac system conserves the Lorentz gauge condition is unconditionally stable and highly efficient as our numerical examples show. In particular, we focus in our ex...

متن کامل

Dirac Monopole from Lorentz Symmetry in N-Dimensions: II. The Generalized Monopole

In a previous paper, we found an extension of the N -dimensional Lorentz generators that partially restores the closed operator algebra in the presence of a Maxwell field, and is conserved under system evolution. Generalizing the construction found by Bérard, Grandati, Lages and Mohrbach for the angular momentum operators in the O(3)-invariant nonrelativistic case, we showed that the constructi...

متن کامل

Some Observations on Dirac Measure-Preserving Transformations and their Results

Dirac measure is an important measure in many related branches to mathematics. The current paper characterizes measure-preserving transformations between two Dirac measure spaces or a Dirac measure space and a probability measure space. Also, it studies isomorphic Dirac measure spaces, equivalence Dirac measure algebras, and conjugate of Dirac measure spaces. The equivalence classes of a Dirac ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003