Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria.
نویسندگان
چکیده
Mycothiol (MSH; AcCys-GlcN-Ins) is the major thiol found in Actinobacteria and has many of the functions of glutathione, which is the dominant thiol in other bacteria and eukaryotes but is absent in Actinobacteria. MSH functions as a protected reserve of cysteine and in the detoxification of alkylating agents, reactive oxygen and nitrogen species, and antibiotics. MSH also acts as a thiol buffer which is important in maintaining the highly reducing environment within the cell and protecting against disulfide stress. The pathway of MSH biosynthesis involves production of GlcNAc-Ins-P by MSH glycosyltransferase (MshA), dephosphorylation by the MSH phosphatase MshA2 (not yet identified), deacetylation by MshB to produce GlcN-Ins, linkage to Cys by the MSH ligase MshC, and acetylation by MSH synthase (MshD), yielding MSH. Studies of MSH mutants have shown that the MSH glycosyltransferase MshA and the MSH ligase MshC are required for MSH production, whereas mutants in the MSH deacetylase MshB and the acetyltransferase (MSH synthase) MshD produce some MSH and/or a closely related thiol. Current evidence indicates that MSH biosynthesis is controlled by transcriptional regulation mediated by sigma(B) and sigma(R) in Streptomyces coelicolor. Identified enzymes of MSH metabolism include mycothione reductase (disulfide reductase; Mtr), the S-nitrosomycothiol reductase MscR, the MSH S-conjugate amidase Mca, and an MSH-dependent maleylpyruvate isomerase. Mca cleaves MSH S-conjugates to generate mercapturic acids (AcCySR), excreted from the cell, and GlcN-Ins, used for resynthesis of MSH. The phenotypes of MSH-deficient mutants indicate the occurrence of one or more MSH-dependent S-transferases, peroxidases, and mycoredoxins, which are important targets for future studies. Current evidence suggests that several MSH biosynthetic and metabolic enzymes are potential targets for drugs against tuberculosis. The functions of MSH in antibiotic-producing streptomycetes and in bioremediation are areas for future study.
منابع مشابه
The glycosyltransferase gene encoding the enzyme catalyzing the first step of mycothiol biosynthesis (mshA).
Mycothiol is the major thiol present in most actinomycetes and is produced from the pseudodisaccharide 1D-myo-inosityl 2-acetamido-2-deoxy-alpha-D-glucopyranoside (GlcNAc-Ins). A transposon mutant of Mycobacterium smegmatis shown to be GlcNAc-Ins and mycothiol deficient was sequenced to identify a putative glycosyltransferase gene designated mshA. The ortholog in Mycobacterium tuberculosis, Rv0...
متن کاملN-Acetyl-1-D-myo-inosityl-2-amino-2-deoxy-alpha-D-glucopyranoside deacetylase (MshB) is a key enzyme in mycothiol biosynthesis.
Mycothiol is a novel thiol produced only by actinomycetes and is the major low-molecular-weight thiol in mycobacteria. Mycothiol was previously shown to be synthesized from 1-D-myo-inosityl-2-amino-2-deoxy-alpha-D-glucopyranoside by ligation with cysteine followed by acetylation. A novel mycothiol-dependent detoxification enzyme, mycothiol conjugate amidase, was recently identified in Mycobacte...
متن کاملOverexpression of Mycothiol Disulfide Reductase Enhances Corynebacterium glutamicum Robustness by Modulating Cellular Redox Homeostasis and Antioxidant Proteins under Oxidative Stress
Mycothiol (MSH) is the dominant low-molecular-weight thiol (LMWT) unique to high-(G+C)-content Gram-positive Actinobacteria, such as Corynebacterium glutamicum, and is oxidised into its disulfide form mycothiol disulfide (MSSM) under oxidative conditions. Mycothiol disulfide reductase (Mtr), an NADPH-dependent enzyme, reduces MSSM to MSH, thus maintaining intracellular redox homeostasis. In thi...
متن کاملRedox regulation by reversible protein S-thiolation in bacteria
Low molecular weight (LMW) thiols function as thiol-redox buffers to maintain the reduced state of the cytoplasm. The best studied LMW thiol is the tripeptide glutathione (GSH) present in all eukaryotes and Gram-negative bacteria. Firmicutes bacteria, including Bacillus and Staphylococcus species utilize the redox buffer bacillithiol (BSH) while Actinomycetes produce the related redox buffer my...
متن کاملRedox control in actinobacteria.
As most actinobacteria are obligate aerobes, they have to cope with endogenously generated reactive oxygen species, and actinobacterial pathogens have to resist oxidative attack by phagocytes. Actinobacteria also have to survive long periods under low oxygen tension; for example, Mycobacterium tuberculosis can persist in the host for years under apparently hypoxic conditions in a latent, non-re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology and molecular biology reviews : MMBR
دوره 72 3 شماره
صفحات -
تاریخ انتشار 2008