Hippocampal place cells can encode multiple trial-dependent features through rate remapping.

نویسندگان

  • Kevin Allen
  • J Nick P Rawlins
  • David M Bannerman
  • Jozsef Csicsvari
چکیده

The activity of hippocampal pyramidal cells reflects both the current position of the animal and information related to its current behavior. Here we investigated whether single hippocampal neurons can encode several independent features defining trials during a memory task. We also tested whether task-related information is represented by partial remapping of the place cell population or, instead, via firing rate modulation of spatially stable place cells. To address these two questions, the activity of hippocampal neurons was recorded in rats performing a conditional discrimination task on a modified T-maze in which the identity of a food reward guided behavior. When the rat was on the central arm of the maze, the firing rate of pyramidal cells changed depending on two independent factors: (1) the identity of the food reward given to the animal and (2) the previous location of the animal on the maze. Importantly, some pyramidal cells encoded information relative to both factors. This trial-type specific and retrospective coding did not interfere with the spatial representation of the maze: hippocampal cells had stable place fields and their theta-phase precession profiles were unaltered during the task, indicating that trial-related information was encoded via rate remapping. During error trials, encoding of both trial-related information and spatial location was impaired. Finally, we found that pyramidal cells also encode trial-related information via rate remapping during the continuous version of the rewarded alternation task without delays. These results suggest that hippocampal neurons can encode several task-related cognitive aspects via rate remapping.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activity-dependent plasticity of hippocampal place maps

Hippocampal neurons encode a cognitive map of space. These maps are thought to be updated during learning and in response to changes in the environment through activity-dependent synaptic plasticity. Here we examine how changes in activity influence spatial coding in rats using halorhodopsin-mediated, spatially selective optogenetic silencing. Halorhoposin stimulation leads to light-induced sup...

متن کامل

Dynamic coding of dorsal hippocampal neurons between tasks that differ in structure and memory demand.

Hippocampal place fields show remapping between environments that contain sufficiently different contextual features, a phenomenon that may reflect a mechanism for episodic memory formation. Previous studies have shown that place fields remap to changes in the configuration of visual landmarks in an environment. Other experiments have demonstrated that remapping can occur with experience, even ...

متن کامل

Hippocampal Remapping Is Constrained by Sparseness rather than Capacity

Grid cells in the medial entorhinal cortex encode space with firing fields that are arranged on the nodes of spatial hexagonal lattices. Potential candidates to read out the space information of this grid code and to combine it with other sensory cues are hippocampal place cells. In this paper, we investigate a population of grid cells providing feed-forward input to place cells. The capacity o...

متن کامل

Extinction of Learned Fear Induces Hippocampal Place Cell Remapping.

The extinction of learned fear is a hippocampus-dependent process thought to embody new learning rather than erasure of the original fear memory, although it is unknown how these competing contextual memories are represented in the hippocampus. We previously demonstrated that contextual fear conditioning results in hippocampal place cell remapping and long-term stabilization of novel representa...

متن کامل

Place Field Repetition and Purely Local Remapping in a Multicompartment Environment

Hippocampal place cells support spatial memory using sensory information from the environment and self-motion information to localize their firing fields. Currently, there is disagreement about whether CA1 place cells can use pure self-motion information to disambiguate different compartments in environments containing multiple visually identical compartments. Some studies report that place cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 32 42  شماره 

صفحات  -

تاریخ انتشار 2012