Higher-order Alexander Invariants and Filtrations of the Knot Concordance Group

نویسندگان

  • TIM D. COCHRAN
  • TAEHEE KIM
چکیده

We establish certain “nontriviality” results for several filtrations of the smooth and topological knot concordance groups. First, as regards the n-solvable filtration of the topological knot concordance group, C, defined by K. Orr, P. Teichner and the first author: 0 ⊂ · · · ⊂ F(n.5) ⊂ F(n) ⊂ · · · ⊂ F(1.5) ⊂ F(1.0) ⊂ F(0.5) ⊂ F(0) ⊂ C, we refine the recent nontriviality results of Cochran and Teichner by including information on the Alexander modules. These results also extend those of C. Livingston and the second author. We exhibit similar structure in the closely related symmetric Grope filtration of C. We also show that the Grope filtration of the smooth concordance group is nontrivial using examples that cannot be distinguished by the Ozsváth-Szabó τ -invariant nor by J. Rasmussen’s sinvariant. Our broader contribution is to establish, in “the relative case”, the key homological results whose analogues Cochran-Orr-Teichner established in “the absolute case”. We say two knots K0 and K1 are concordant modulo n-solvability if K0#(−K1) ∈ F(n). Our main result is that, for any knot K whose classical Alexander polynomial has degree greater than 2, and for any positive integer n, there exist infinitely many knots Ki that are concordant to K modulo n-solvability, but are all distinct modulo n.5-solvability. Moreover, the Ki and K share the same classical Seifert matrix and Alexander module as well as sharing the same higher-order Alexander modules and Seifert presentations up to order n− 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primary Decomposition and the Fractal Nature of Knot Concordance

For each sequence P = (p1(t), p2(t), . . . ) of polynomials we define a characteristic series of groups, called the derived series localized at P. Given a knot K in S, such a sequence of polynomials arises naturally as the orders of certain submodules of a sequence of higher-order Alexander modules of K. These group series yield filtrations of the knot concordance group that refine the (n)-solv...

متن کامل

Non-triviality of the Cochran-orr-teichner Filtration of the Knot Concordance Group

We establish nontriviality results for certain filtrations of the smooth and topological knot concordance groups. First, as regards the n-solvable filtration of the topological knot concordance group, C, defined by K. Orr, P. Teichner and the first author [COT1]: 0 ⊂ · · · ⊂ F(n.5) ⊂ F(n) ⊂ · · · ⊂ F(1.5) ⊂ F(1.0) ⊂ F(0.5) ⊂ F(0) ⊂ C, we refine the recent nontriviality results of Cochran and Te...

متن کامل

Higher-order Genera of Knots

For certain classes of knots we define geometric invariants called higher-order genera. Each of these invariants is a refinement of the slice genus of a knot. We find lower bounds for the higherorder genera in terms of certain von Neumann ρ-invariants, which we call higher-order signatures. The higher-order genera offer a refinement of the Grope filtration of the knot concordance group.

متن کامل

Concordance Invariants from Higher Order Covers

We generalize the Manolescu-Owens smooth concordance invariant δ(K) of knots K ⊂ S to invariants δpn(K) obtained by considering covers of order p, with p a prime. Our main result shows that for any prime p 6= 2, the thus obtained homomorphism ⊕n∈Nδpn from the smooth concordance group to Z∞ has infinite rank. We also show that unlike δ, these new invariants typically are not multiples of the kno...

متن کامل

Slice Knots with Distinct Ozsváth-szabó and Rasmussen Invariants

As proved by Hedden and Ording, there exist knots for which the Ozsváth-Szabó and Rasmussen smooth concordance invariants, τ and s, differ. The Hedden-Ording examples have nontrivial Alexander polynomials and are not topologically slice. It is shown in this note that a simple manipulation of the Hedden-Ording examples yields a topologically slice Alexander polynomial one knot for which τ and s ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005