Using neural network ensembles for bankruptcy prediction and credit scoring

نویسندگان

  • Chih-Fong Tsai
  • Jhen-Wei Wu
چکیده

Bankruptcy prediction and credit scoring have long been regarded as critical topics and have been studied extensively in the accounting and finance literature. Artificial intelligence and machine learning techniques have been used to solve these financial decision-making problems. The multilayer perceptron (MLP) network trained by the back-propagation learning algorithm is the mostly used technique for financial decision-making problems. In addition, it is usually superior to other traditional statistical models. Recent studies suggest combining multiple classifiers (or classifier ensembles) should be better than single classifiers. However, the performance of multiple classifiers in bankruptcy prediction and credit scoring is not fully understood. In this paper, we investigate the performance of a single classifier as the baseline classifier to compare with multiple classifiers and diversified multiple classifiers by using neural networks based on three datasets. By comparing with the single classifier as the benchmark in terms of average prediction accuracy, the multiple classifiers only perform better in one of the three datasets. The diversified multiple classifiers trained by not only different classifier parameters but also different sets of training data perform worse in all datasets. However, for the Type I and Type II errors, there is no exact winner. We suggest that it is better to consider these three classifier architectures to make the optimal financial decision. 2007 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring

Previous studies about ensembles of classifiers for bankruptcy prediction and credit scoring have been presented. In these studies, different ensemble schemes for complex classifiers were applied, and the best results were obtained using the Random Subspace method. The Bagging scheme was one of the ensemble methods used in the comparison. However, it was not correctly used. It is very important...

متن کامل

An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring

In this paper, we investigate the performance of several systems based on ensemble of classifiers for bankruptcy prediction and credit scoring. The obtained results are very encouraging, our results improved the performance obtained using the stand-alone classifiers. We show that the method ‘‘Random Subspace” outperforms the other ensemble methods tested in this paper. Moreover, the best stand-...

متن کامل

Credit scoring in banks and financial institutions via data mining techniques: A literature review

This paper presents a comprehensive review of the works done, during the 2000–2012, in the application of data mining techniques in Credit scoring. Yet there isn’t any literature in the field of data mining applications in credit scoring. Using a novel research approach, this paper investigates academic and systematic literature review and includes all of the journals in the Science direct onli...

متن کامل

Investigating Financial Crisis Prediction Power using Neural Network and Non-Linear Genetic Algorithm

Bankruptcy is an event with strong impacts on management, shareholders, employees, creditors, customers and other stakeholders, so as bankruptcy challenges the country both socially and economically. Therefore, correct prediction of bankruptcy is of high importance in the financial world. This research intends to investigate financial crisis prediction power using models based on Neural Network...

متن کامل

An Adaptive Fuzzy Neural Network Model for Bankruptcy Prediction of Listed Companies on the Tehran Stock Exchange

Nowadays, prediction of corporate bankruptcy is one of the most important issues which have received great attentions among academia and practitioners. Although several studies have been accomplished in the field of bankruptcy prediction, less attention has been devoted for proposing a systematic approach based on fuzzy neural networks.  The present study proposes fuzzy neural networks to predi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2008