Lysophospholipids and ATP mutually suppress maturation and release of IL-1 beta in mouse microglial cells using a Rho-dependent pathway.
نویسندگان
چکیده
The P2X7 receptor (P2X7R), an ATP-gated ion channel, plays essential roles in the release and maturation of IL-1beta in microglial cells in the brain. Previously, we found that lysophosphatidylcholine (LPC) potentiated P2X7R-mediated intracellular signals in microglial cells. In this study, we determined whether the lysophospholipids, i.e., LPC and sphingosylphosphorylcholine (SPC), modulate the ATP-induced release and processing of IL-1beta mediated by P2X7R in mouse MG6 microglial cells. LPC or SPC alone induced the release of precursor (pro-IL-1beta) and mature IL-1beta (mIL-1beta) from LPS-primed MG6 cells, possibly due to lytic functions. However, these lysophospholipids inhibited ATP-induced caspase-1 activation that is usually followed by the release of mIL-1beta. Conversely, ATP inhibited the release of pro-IL-1beta and mIL-1beta induced by LPC/SPC. This suggests that lysophospholipids and ATP mutually suppressed each function to release IL-1beta. P2X7R activation resulted in microtubule reorganization in the MG6 cells that was blocked in the presence of LPC and SPC. LPC/SPC reduced the amount of activated RhoA after stimulation with ATP, implying that these lysophospholipids block ATP-induced microtubule reorganization by interfering with RhoA activation. In addition, the microtubule inhibitor colchicine inhibited ATP-induced release of mIL-1beta similar to that of LPC and SPC. This suggests that the impairment of the microtubule reassembly may be associated with the inhibitory effects of LPC/SPC on ATP-induced mIL-1beta release. Mutual suppression by ATP and LPC/SPC on the maturation of IL-1beta was observed in LPS-primed primary microglia. Collectively, these data suggest opposing functions by lysophospholipids, either proinflammatory or anti-inflammatory, in regard to the maturation and release of IL-1beta from microglial cells.
منابع مشابه
Kinetics and mechanism of ATP-dependent IL-1 beta release from microglial cells.
Endotoxin-dependent release of IL-1 beta from mouse microglial cells is a very inefficient process, as it is slow and leads to accumulation of a modest amount of extracellular cytokine. Furthermore, secreted IL-1 beta is mostly in the procytokine unprocessed form. Addition of extracellular ATP to LPS-primed microglia caused a burst of release of a large amount of processed IL-1 beta. ATP had no...
متن کاملP2X7 receptor-dependent blebbing and the activation of Rho-effector kinases, caspases, and IL-1 beta release.
In response to ATP binding, the P2X7R facilitates cation channel activation, nonspecific pore formation, rapid changes in plasma membrane morphology, and secretion of IL-1 beta from LPS-primed macrophages. To investigate the relationship between the P2X7R-dependent changes in plasma membrane organization and the release of IL-1 beta, we generated time-lapse movies of ATP-stimulated BAC1 murine ...
متن کاملPurinergic Modulation of Interleukin-1β Release from Microglial Cells Stimulated with Bacterial Endotoxin
Microglial cells express a peculiar plasma membrane receptor for extracellular ATP, named P2Z/P2X7 purinergic receptor, that triggers massive transmembrane ion fluxes and a reversible permeabilization of the plasma membrane to hydrophylic molecules of up to 900 dalton molecule weight and eventual cell death (Di Virgilio, F. 1995. Immunol. Today, 16:524-528). The physiological role of this newly...
متن کاملHemin Induces the Activation of NLRP3 Inflammasome in N9 Microglial Cells
Background: Hemin is an important sterile component that induces a neuroinflammatory response after intracerebral hemorrhage, in which NLRP3 inflammasome activation has also proved to be involved. Although microglial activation acts as a key contributor in the neuroinflammatory response, the relationship between hemin and NLRP3 in microglia remains poorly understood. Objective: To investigate w...
متن کاملP 106: Effects of Dimethyl Sulfoxide on NLRP3 Inflammasome and Alzheimer\'s Disease
Alzheimer's disease (AD), the most ordinary form of dementia and extracellular accumulation of Amyloid-β (Aβ) in senile plaques, is an important and a main event in the pathogenesis of AD. Deposition of Aβ Peptide initiates a spectrum of cellular responses that are interposed by the resident neuroimmune cells of the brain, the microglia. Recently, a novel inflammasome signaling&n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 180 12 شماره
صفحات -
تاریخ انتشار 2008