Regularity of coupled two-dimensional Nonlinear Fokker-Planck and Navier-Stokes Systems

نویسنده

  • P. Constantin
چکیده

We consider systems of particles coupled with fluids. The particles are described by the evolution of their density, and the fluid is described by the Navier-Stokes equations. The particles add stress to the fluid and the fluid carries and deforms the particles. Because the particles perform rapid random motion, we assume that the density of particles is carried by a time average of the fluid velocity. The resulting coupled system is shown to have smooth solutions at all values of parameters, in two spatial dimensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global regularity of solutions of coupled Navier-Stokes equations and nonlinear Fokker Planck equations

We provide a proof of global regularity of solutions of coupled Navier-Stokes equations and Fokker-Planck equations, in two spatial dimensions, in the absence of boundaries. The proof yields a priori estimates for the growth of spatial gradients. 1991 Mathematical subject classification (Amer. Math. Soc.): 35K, 35Q30, 82C31, 76A05.

متن کامل

Fe b 20 07 Global well - posedness for a Smoluchowski equation coupled with Navier - Stokes equations in 2

We prove global existence for a nonlinear Smoluchowski equation (a nonlinear Fokker-Planck equation) coupled with Navier-Stokes equations in 2d. The proof uses a deteriorating regularity estimate in the spirit of [5] (see also [1])

متن کامل

Existence of Global Weak Solutions to Fokker–planck and Navier–stokes–fokker–planck Equations in Kinetic Models of Dilute Polymers

This survey paper reviews recent developments concerning the existence of global weak solutions to Fokker–Planck equations with unbounded drift terms, and coupled Navier–Stokes–Fokker–Planck systems of partial differential equations, that arise in finitely extensible nonlinear elastic (FENE) type kinetic models of incompressible dilute polymeric fluids in the case of general noncorotational flow.

متن کامل

Global well posedness for a Smoluchowski equation coupled with Navier-Stokes equations in 2D

We prove global existence for a nonlinear Smoluchowski equation (a nonlinear FokkerPlanck equation) coupled with Navier-Stokes equations in 2d. The proof uses a deteriorating regularity estimate in the spirit of [5] (see also [1]) Key wordsNonlinear Fokker-Planck equations, Navier-Stokes equations, Smoluchowski equation, micro-macro interactions. AMS subject classification 35Q30, 82C31, 76A05.

متن کامل

Hölder Continuity of Solutions of 2D Navier-Stokes Equations with Singular Forcing

We discuss the regularity of solutions of 2D incompressible NavierStokes equations forced by singular forces. The problem is motivated by the study of complex fluids modeled by the Navier-Stokes equations coupled to a nonlinear Fokker-Planck equation describing microscopic corpora embedded in the fluid. This leads naturally to bounded added stress and hence to W forcing of the Navier-Stokes equ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006