Regularity of coupled two-dimensional Nonlinear Fokker-Planck and Navier-Stokes Systems
نویسنده
چکیده
We consider systems of particles coupled with fluids. The particles are described by the evolution of their density, and the fluid is described by the Navier-Stokes equations. The particles add stress to the fluid and the fluid carries and deforms the particles. Because the particles perform rapid random motion, we assume that the density of particles is carried by a time average of the fluid velocity. The resulting coupled system is shown to have smooth solutions at all values of parameters, in two spatial dimensions.
منابع مشابه
Global regularity of solutions of coupled Navier-Stokes equations and nonlinear Fokker Planck equations
We provide a proof of global regularity of solutions of coupled Navier-Stokes equations and Fokker-Planck equations, in two spatial dimensions, in the absence of boundaries. The proof yields a priori estimates for the growth of spatial gradients. 1991 Mathematical subject classification (Amer. Math. Soc.): 35K, 35Q30, 82C31, 76A05.
متن کاملFe b 20 07 Global well - posedness for a Smoluchowski equation coupled with Navier - Stokes equations in 2
We prove global existence for a nonlinear Smoluchowski equation (a nonlinear Fokker-Planck equation) coupled with Navier-Stokes equations in 2d. The proof uses a deteriorating regularity estimate in the spirit of [5] (see also [1])
متن کاملExistence of Global Weak Solutions to Fokker–planck and Navier–stokes–fokker–planck Equations in Kinetic Models of Dilute Polymers
This survey paper reviews recent developments concerning the existence of global weak solutions to Fokker–Planck equations with unbounded drift terms, and coupled Navier–Stokes–Fokker–Planck systems of partial differential equations, that arise in finitely extensible nonlinear elastic (FENE) type kinetic models of incompressible dilute polymeric fluids in the case of general noncorotational flow.
متن کاملGlobal well posedness for a Smoluchowski equation coupled with Navier-Stokes equations in 2D
We prove global existence for a nonlinear Smoluchowski equation (a nonlinear FokkerPlanck equation) coupled with Navier-Stokes equations in 2d. The proof uses a deteriorating regularity estimate in the spirit of [5] (see also [1]) Key wordsNonlinear Fokker-Planck equations, Navier-Stokes equations, Smoluchowski equation, micro-macro interactions. AMS subject classification 35Q30, 82C31, 76A05.
متن کاملHölder Continuity of Solutions of 2D Navier-Stokes Equations with Singular Forcing
We discuss the regularity of solutions of 2D incompressible NavierStokes equations forced by singular forces. The problem is motivated by the study of complex fluids modeled by the Navier-Stokes equations coupled to a nonlinear Fokker-Planck equation describing microscopic corpora embedded in the fluid. This leads naturally to bounded added stress and hence to W forcing of the Navier-Stokes equ...
متن کامل