Multisymplectic box schemes and the Korteweg–de Vries equation

نویسندگان

  • Uri M. Ascher
  • Robert I. McLachlan
چکیده

We develop and compare some geometric integrators for the Korteweg-de Vries equation, especially with regard to their robustness for large steps in space and time, ∆x and ∆t, and over long times. A standard, semi-explicit, symplectic finite difference scheme is found to be fast and robust. However, in some parameter regimes such schemes are susceptible to developing small wiggles. At the same instances the fully implicit and multisymplectic Preissmann scheme, written as a 12-point box scheme, stays smooth. This is accounted for by the ability of the box scheme to preserve the shape of the dispersion relation of any hyperbolic system for all ∆x and ∆t. We also develop a simplified 8-point version of this box scheme which maintains its advantageous features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Approach for Korteweg-de Vries Equation of Fractional Order

In this study, the localfractional variational iterationmethod (LFVIM) and the localfractional series expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) within local fractionalderivative operators (LFDOs). The efficiency of the considered methods is illustrated by some examples. The results reveal that the suggested algorithms are very ef...

متن کامل

On Symplectic and Multisymplectic Schemes for the KdV Equation

We examine some symplectic and multisymplectic methods for the notorious Korteweg–de Vries equation, with the question whether the added structure preservation that these methods offer is key in providing high quality schemes for the long time integration of nonlinear, conservative partial differential equations. Concentrating on 2nd order discretizations, several interesting schemes are constr...

متن کامل

Forced oscillations of a damped‎ ‎Korteweg-de Vries equation on a periodic domain

‎In this paper‎, ‎we investigate a damped Korteweg-de‎ ‎Vries equation with forcing on a periodic domain‎ ‎$mathbb{T}=mathbb{R}/(2pimathbb{Z})$‎. ‎We can obtain that if the‎ ‎forcing is periodic with small amplitude‎, ‎then the solution becomes‎ ‎eventually time-periodic.

متن کامل

The tanh method for solutions of the nonlinear modied Korteweg de Vries equation

In this paper, we have studied on the solutions of modied KdV equation andalso on the stability of them. We use the tanh method for this investigationand given solutions are good-behavior. The solution is shock wave and can beused in the physical investigations

متن کامل

Adomian Polynomial and Elzaki Transform Method of Solving Fifth Order Korteweg-De Vries Equation

Elzaki transform and Adomian polynomial is used to obtain the exact solutions of nonlinear fifth order Korteweg-de Vries (KdV) equations. In order to investigate the effectiveness of the method, three fifth order KdV equations were considered. Adomian polynomial is introduced as an essential tool to linearize all the nonlinear terms in any given equation because Elzaki transform cannot handle n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003