On Conformally Kähler, Einstein Manifolds

نویسندگان

  • Xiuxiong Chen
  • Claude LeBrun
  • Brian Weber
چکیده

We prove that any compact complex surface with c1 > 0 admits an Einstein metric which is conformally related to a Kähler metric. The key new ingredient is the existence of such a metric on the blow-up CP2#2CP2 of the complex projective plane at two distinct points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Penrose transform on conformally Bochner-Kähler manifolds

We give a generalization of the Penrose transform on Hermitian manifolds with metrics locally conformally equivalent to Bochner-Kähler metrics. We also give an explicit formula for the inverse transform. 1991 Mathematics Subject Classification: 32L25 (Primary), 53C55, 32C35 (Secondary)

متن کامل

H-minimal Lagrangian fibrations in Kähler manifolds and minimal Lagrangian vanishing tori in Kähler-Einstein manifolds

H-minimal Lagrangian submanifolds in general Kähler manifolds generalize special Lagrangian submanifolds in Calabi-Yau manifolds. In this paper we will use the deformation theory of H-minimal Lagrangian submanifolds in Kähler manifolds to construct minimal Lagrangian torus in certain Kähler-Einstein manifolds with negative first Chern class.

متن کامل

2 4 A ug 2 00 6 The geometry of conformally Einstein metrics with degenerate Weyl tensor

The problem of characterizing conformally Einstein manifolds by tensorial conditions has been tackled recently in papers by M. Listing, and in work by A. R. Gover and P. Nurowski. Their results apply to metrics satisfying a " non-degeneracy " condition on the Weyl tensor W. We investigate the geometry of the foliations arising on conformally Einstein spaces (with Riemannian signature) where thi...

متن کامل

Miyaoka-yau Type Inequalities for Kähler-einstein Manifolds

We investigate Chern number inequalities on Kähler-Einstein manifolds and their relation to uniformization. For Kähler-Einstein manifolds with c1 > 0, we prove certain Chern number inequalities in the toric case. For Kähler-Einstein manifolds with c1 < 0, we propose a series of Chern number inequalities, interpolating Yau’s and Miyaoka’s inequalities.

متن کامل

Construction of conformally compact Einstein manifolds

We produce some explicit examples of conformally compact Einstein manifolds, whose conformal compactifications are foliated by Riemannian products of a closed Einstein manifold with the total space of a principal circle bundle over products of Kähler-Einstein manifolds. We compute the associated conformal invariants, i.e., the renormalized volume in even dimensions and the conformal anomaly in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007