A non-linear homogeneous model for bone-like materials under compressive load.

نویسندگان

  • M Mengoni
  • R Voide
  • C de Bien
  • H Freichels
  • C Jérôme
  • A Léonard
  • D Toye
  • R Müller
  • G H van Lenthe
  • J P Ponthot
چکیده

Finite element (FE) models accurately compute the mechanical response of bone and bone-like materials when the models include their detailed microstructure. In order to simulate non-linear behavior, which currently is only feasible at the expense of extremely high computational costs, coarser models can be used if the local morphology has been linked to the apparent mechanical behavior. The aim of this paper is to implement and validate such a constitutive law. This law is able to capture the non-linear structural behavior of bone-like materials through the use of fabric tensors. It also allows for irreversible strains using an elastoplastic material model incorporating hardening. These features are expressed in a constitutive law based on the anisotropic continuum damage theory coupled with isotropic elastoplasticity in a finite strain framework. This material model was implemented into metafor (LTAS-MNNL, University of Liège, Belgium), a non-linear FE software. The implementation was validated against experimental data of cylindrical samples subjected to compression. Three materials with bone-like microstructure were tested: aluminum foams of variable density (ERG, Oakland, CA, USA), polylactic acid foam (CERM, University of Liège, Liège, Belgium), and cancellous bone tissue of a deer antler (Faculty of Veterinary Medicine, University of Liège, Liège, Belgium).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Buckling Analysis of Simply-supported Functionally Graded Rectangular Plates under Non-uniform In-plane Compressive Loading

In this research, mechanical buckling of rectangular plates of functionally graded materials (FGMs) is considered. Equilibrium and stability equations of a FGM rectangular plate under uniform in-plane compression are derived. For isotropic materials, convergent buckling loads have been presented for non-uniformly compressed rectangular plates based on a rigorous superposition fourier solution f...

متن کامل

An Analytical Approach of Nonlinear Thermo-mechanical Buckling of Functionally Graded Graphene-reinforced Composite Laminated Cylindrical Shells under Compressive Axial Load Surrounded by Elastic Foundation

This paper deals with an analytical approach to predict the nonlinear buckling behavior of functionally graded graphene-reinforced composite laminated cylindrical shells under axial compressive load surrounded by Pasternak’s elastic foundation in a thermal environment. Piece-wise functionally graded graphene-reinforced, composite layers are sorted with different types of graphene distribution. ...

متن کامل

Mechanical performance of three-dimensional bio- nanocomposite scaffolds designed with digital light processing for biomedical applications

Introduction: The need for biocompatible and bioactive scaffolds to accelerate the regeneration and repair of fractured bones has been considered for bone tissue engineering applications during recent decades. The new methods were developed to produce scaffolds to improve the tissue quality, size of cavities, control the porosity and increase the scaffold compressive strength u...

متن کامل

تحلیل المان محدود ایمپلنت‌های دندانی در معرض بارگذاری حرارتی

  Background and Aims: Dental implants have been studied for replacement of missing teeth for many years. Productivity of implants is extremely related to the stability and resistance under applied loads and the minimum stress in jaw bone. The purpose of this study was to study numerically the 3D model of implant under thermal loads.   Materials and Methods: Bone and the ITI implant were modele...

متن کامل

Freeze casting of hydroxyapatite scaffolds for bone tissue engineering.

Although extensive efforts have been put into the development of porous scaffolds for bone regeneration, with encouraging results, all porous materials have a common limitation: the inherent lack of strength associated with porosity. Hence, the development of porous hydroxyapatite scaffolds has been hindered to non-load bearing applications. We report here how freeze casting can be applied to s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal for numerical methods in biomedical engineering

دوره 28 2  شماره 

صفحات  -

تاریخ انتشار 2012