Repeated Origin of Three-Dimensional Leaf Venation Releases Constraints on the Evolution of Succulence in Plants

نویسندگان

  • R. Matthew Ogburn
  • Erika J. Edwards
چکیده

Succulent water storage is a prominent feature among plants adapted to arid zones, but we know little about how succulence evolves and how it is integrated into organs already tasked with multiple functions. Increased volume in succulent leaves, for example, may result in longer transport distances between veins and the cells that they supply, which in turn could negatively impact photosynthesis. We quantified water storage in a group of 83 closely related species to examine the evolutionary dynamics of succulence and leaf venation. In most leaves, vein density decreased with increasing succulence, resulting in significant increases in the path length of water from veins to evaporative surfaces. The most succulent leaves, however, had a distinct three-dimensional (3D) venation pattern, which evolved 11-12 times within this small lineage, likely via multiple developmental pathways. 3D venation "resets" internal leaf distances, maintaining moderate vein density in extremely succulent tissues and suggesting that the evolution of extreme succulence is constrained by the need to maintain an efficient leaf hydraulic system. The repeated evolution of 3D venation decouples leaf water storage from hydraulic path length, facilitating the evolutionary exploration of novel phenotypic space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plant Venation: From Succulence to Succulents

Succulent plants dominate certain semi-arid habitats. A new study shows independent origins of 3D venation reflect hydraulic advantages for tissue succulence, and has implications for the molecular development of venation and tissue differentiation, as well as the evolution of crassulacean acid metabolism.

متن کامل

Numerical Modeling of an Innovative Bipolar Plate Design Based on the Leaf Venation Patterns for PEM Fuel Cells

Flow channel design on bipolar plates has a direct effect on Proton Exchange Membrane (PEM) fuel cell performance. It has been found out that the flow field design has a deterministic role on the mass transport and water management, and therefore on the achieved power in PEM Fuel cells. This study concentrates on improvements in the fuel cell performance through optimization of channel dimensio...

متن کامل

Evolution of developmental potential and the multiple independent origins of leaves in Paleozoic vascular plants

—Four vascular plant lineages, the ferns, sphenopsids, progymnosperms, and seed plants, evolved laminated leaves in the Paleozoic. A principal coordinate analysis of 641 leaf species from North American and European floras ranging in age from Middle Devonian through the end of the Permian shows that the clades followed parallel trajectories of evolution: each clade exhibits rapid radiation of l...

متن کامل

Leaf palmate venation and vascular redundancy confer tolerance of hydraulic disruption.

Leaf venation is a showcase of plant diversity, ranging from the grid-like network in grasses, to a wide variety of dendritic systems in other angiosperms. A principal function of the venation is to deliver water; however, a hydraulic significance has never been demonstrated for contrasting major venation architectures, including the most basic dichotomy, "pinnate" and "palmate" systems. We hyp...

متن کامل

Insights on the evolution of plant succulence from a remarkable radiation in Madagascar (Euphorbia).

Patterns of adaptation in response to environmental variation are central to our understanding of biodiversity, but predictions of how and when broad-scale environmental conditions such as climate affect organismal form and function remain incomplete. Succulent plants have evolved in response to arid conditions repeatedly, with various plant organs such as leaves, stems, and roots physically mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2013