Programming peptidomimetic syntheses by translating genetic codes designed de novo.

نویسندگان

  • Anthony C Forster
  • Zhongping Tan
  • Madhavi N L Nalam
  • Hening Lin
  • Hui Qu
  • Virginia W Cornish
  • Stephen C Blacklow
چکیده

Although the universal genetic code exhibits only minor variations in nature, Francis Crick proposed in 1955 that "the adaptor hypothesis allows one to construct, in theory, codes of bewildering variety." The existing code has been expanded to enable incorporation of a variety of unnatural amino acids at one or two nonadjacent sites within a protein by using nonsense or frameshift suppressor aminoacyl-tRNAs (aa-tRNAs) as adaptors. However, the suppressor strategy is inherently limited by compatibility with only a small subset of codons, by the ways such codons can be combined, and by variation in the efficiency of incorporation. Here, by preventing competing reactions with aa-tRNA synthetases, aa-tRNAs, and release factors during translation and by using nonsuppressor aa-tRNA substrates, we realize a potentially generalizable approach for template-encoded polymer synthesis that unmasks the substantially broader versatility of the core translation apparatus as a catalyst. We show that several adjacent, arbitrarily chosen sense codons can be completely reassigned to various unnatural amino acids according to de novo genetic codes by translating mRNAs into specific peptide analog polymers (peptidomimetics). Unnatural aa-tRNA substrates do not uniformly function as well as natural substrates, revealing important recognition elements for the translation apparatus. Genetic programming of peptidomimetic synthesis should facilitate mechanistic studies of translation and may ultimately enable the directed evolution of small molecules with desirable catalytic or pharmacological properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On solving possibilistic multi- objective De Novo linear programming

Multi-objective De Novo linear programming (MODNLP) is problem for designing optimal system by reshaping the feasible set (Fiala [3] ). This paper deals with MODNLP having possibilistic objective functions coefficients. The problem is considered by inserting possibilistic data in the objective functions coefficients. The solution of the problem is defined and established under the using of effi...

متن کامل

Clustering of Short Read Sequences for de novo Transcriptome Assembly

Given the importance of transcriptome analysis in various biological studies and considering thevast amount of whole transcriptome sequencing data, it seems necessary to develop analgorithm to assemble transcriptome data. In this study we propose an algorithm fortranscriptome assembly in the absence of a reference genome. First, the contiguous sequencesare generated using de Bruijn graph with d...

متن کامل

The First Case of a Small Supernumerary Marker Chromosome 18 in a Klinefelter Fetus: A Case Report

Small supernumerary marker chromosomes (sSMCs), or markers, are abnormal chromosomal fragments that can be hereditary or de novo. Despite the importance of sSMCs diagnosis, de novo sSMCs are rarely detected during the prenatal diagnosis process. Usually, prenatally diagnosed de novo sSMCs cannot be correlated with a particular phenotype without knowing their chromosomal origin and content; ther...

متن کامل

P-70: Evidence for Differential Gene Expression of A Major EpigeneticModifier Enzyme, de novo DNA Methyltransferase 3b, through Vitrification of Mouse Ovary Tissue

Background: Ovarian tissue cryopreservation is a feasible method to preserve female reproductive potential, especially in young patients with cancer or in women at risk of premature ovarian failure. Vitrification has recently emerged as a new trend for biological specimen preservation. On the other hand, gene expression that changes during vitrification can influence oocyte maturation and need ...

متن کامل

Fuzzy multi-stage De-Novo programming problem

The De-Novo programming problem proposed by Zeleny is well-known for its value on designing an optimal system by extending existed resources instead of finding the optimum in a given system with fixed resources. Since few papers are dedicated to explore the De-Novo programming problem with multiple stages and its resolution approach, the De-Novo programming problem is innovatively extended to a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 11  شماره 

صفحات  -

تاریخ انتشار 2003