The splicing factor, Prp40, binds the phosphorylated carboxyl-terminal domain of RNA polymerase II.
نویسندگان
چکیده
We showed previously that the WW domain of the prolyl isomerase, Ess1, can bind the phosphorylated carboxyl-terminal domain (phospho-CTD) of the largest subunit of RNA Polymerase II. Analysis of phospho-CTD binding by four other WW domain-containing Saccharomyces cerevisiae proteins indicates the splicing factor, Prp40, and the RNA polymerase II ubiquitin ligase, Rsp5, can also bind the phospho-CTD. The identification of Prp40 as a phospho-CTD binding protein represents the first demonstration of direct interaction between a documented splicing factor and the phospho-CTD. Domain dissection studies reveal that phospho-CTD binding occurs at multiple locations in Prp40, including sites in both the WW and FF domain regions. Because the conserved repeats of the CTD make it an ideal ligand for multi-site binding events, the implications of multi-site binding are discussed. Our data suggest a mechanism by which the phospho-CTD of elongating RNA polymerase II facilitates commitment complex formation by juxtaposing the 5' and 3' splice sites.
منابع مشابه
The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1.
CA150 represses RNA polymerase II (RNAPII) transcription by inhibiting the elongation of transcripts. The FF repeat domains of CA150 bind directly to the phosphorylated carboxyl-terminal domain of the largest subunit of RNAPII. We determined that this interaction is required for efficient CA150-mediated repression of transcription from the alpha(4)-integrin promoter. Additional functional deter...
متن کاملDifferent phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription.
The activities of several mRNA processing factors are coupled to transcription through binding to RNA polymerase II (Pol II). The largest subunit of Pol II contains a repetitive carboxy-terminal domain (CTD) that becomes highly phosphorylated during transcription. mRNA-capping enzyme binds only to phosphorylated CTD, whereas other processing factors may bind to both phosphorylated and unphospho...
متن کاملPhosphorylated RNA polymerase II stimulates pre-mRNA splicing.
RNA polymerase II (RNAP II) is responsible for transcription of mRNA precursors in eukaryotic cells. Recent studies, however, have suggested that RNAP II also participates in subsequent RNA processing reactions through interactions between the carboxy-terminal domain (CTD) of the RNAP II largest subunit and processing factors. Using reconstituted in vitro splicing assays, we show that RNAP II f...
متن کاملmRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain.
Capping of mRNA occurs shortly after transcription initiation, preceding other mRNA processing events such as mRNA splicing and polyadenylation. To determine the mechanism of coupling between transcription and capping, we tested for a physical interaction between capping enzyme and the transcription machinery. Capping enzyme is not stably associated with basal transcription factors or the RNA p...
متن کاملThe RNA polymerase II C-terminal domain promotes splicing activation through recruitment of a U2AF65-Prp19 complex.
Pre-mRNA splicing is frequently coupled to transcription by RNA polymerase II (RNAPII). This coupling requires the C-terminal domain of the RNAPII largest subunit (CTD), although the underlying mechanism is poorly understood. Using a biochemical complementation assay, we previously identified an activity that stimulates CTD-dependent splicing in vitro. We purified this activity and found that i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 275 51 شماره
صفحات -
تاریخ انتشار 2000