Biological dose estimation for charged-particle therapy using an improved PHITS code coupled with a microdosimetric kinetic model.

نویسندگان

  • Tatsuhiko Sato
  • Yuki Kase
  • Ritsuko Watanabe
  • Koji Niita
  • Lembit Sihver
چکیده

Microdosimetric quantities such as lineal energy, y, are better indexes for expressing the RBE of HZE particles in comparison to LET. However, the use of microdosimetric quantities in computational dosimetry is severely limited because of the difficulty in calculating their probability densities in macroscopic matter. We therefore improved the particle transport simulation code PHITS, providing it with the capability of estimating the microdosimetric probability densities in a macroscopic framework by incorporating a mathematical function that can instantaneously calculate the probability densities around the trajectory of HZE particles with a precision equivalent to that of a microscopic track-structure simulation. A new method for estimating biological dose, the product of physical dose and RBE, from charged-particle therapy was established using the improved PHITS coupled with a microdosimetric kinetic model. The accuracy of the biological dose estimated by this method was tested by comparing the calculated physical doses and RBE values with the corresponding data measured in a slab phantom irradiated with several kinds of HZE particles. The simulation technique established in this study will help to optimize the treatment planning of charged-particle therapy, thereby maximizing the therapeutic effect on tumors while minimizing unintended harmful effects on surrounding normal tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of relative biological effectiveness for boron neutron capture therapy using the PHITS code coupled with a microdosimetric kinetic model

The absorbed doses deposited by boron neutron capture therapy (BNCT) can be categorized into four components: α and (7)Li particles from the (10)B(n, α)(7)Li reaction, 0.54-MeV protons from the (14)N(n, p)(14)C reaction, the recoiled protons from the (1)H(n, n) (1)H reaction, and photons from the neutron beam and (1)H(n, γ)(2)H reaction. For evaluating the irradiation effect in tumors and the s...

متن کامل

Validation of the physical and RBE-weighted dose estimator based on PHITS coupled with a microdosimetric kinetic model for proton therapy

The microdosimetric kinetic model (MKM) is widely used for estimating relative biological effectiveness (RBE)-weighted doses for various radiotherapies because it can determine the surviving fraction of irradiated cells based on only the lineal energy distribution, and it is independent of the radiation type and ion species. However, the applicability of the method to proton therapy has not yet...

متن کامل

Calculation of microdosimetric spectra based on TRAX and its application for modelling RBE using the MKM

Besides the absorbed dose, the Relative Biological Effectiveness (RBE) is the most important quantity in treatment planning with ion radiotherapy. The RBE depends on many different parameters, such as: the biological endpoint, the dose, the particle type and energy and the tissue under consideration. In consequence, the RBE will be different at any location in the treatment field. As the biolog...

متن کامل

Comparison of fluence-to-dose conversion coefficients for deuterons, tritons and helions.

Secondary radiation in aircraft and spacecraft includes deuterons, tritons and helions. Two sets of fluence-to-effective dose conversion coefficients for isotropic exposure to these particles were compared: one used the particle and heavy ion transport code system (PHITS) radiation transport code coupled with the International Commission on Radiological Protection (ICRP) reference phantoms (PHI...

متن کامل

Evaluation of the relative biological effectiveness of the Auger electrons produced during gadolinium neutron capture therapy using microdosimetric approach

Determination of the relative biological effectiveness (RBE) of Auger electrons is a challenging task in radiobiology. In this study, we have estimated the RBE of internal conversion (IC) and Auger electrons released during Gadolinium neutron capture reaction (GNCR) by means of biological weighting functions (BWFs) with microdosimetric approach. Regarding the different distribution of Gadoliniu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Radiation research

دوره 171 1  شماره 

صفحات  -

تاریخ انتشار 2009