Frictional and elastic energy in gecko adhesive detachment.
نویسندگان
چکیده
Geckos use millions of adhesive setae on their toes to climb vertical surfaces at speeds of over 1 m s(-1). Climbing presents a significant challenge for an adhesive since it requires both strong attachment and easy, rapid removal. Conventional pressure-sensitive adhesives are either strong and difficult to remove (e.g. duct tape) or weak and easy to remove (e.g. sticky notes). We discovered that the energy required to detach adhering tokay gecko setae (W(d)) is modulated by the angle (theta) of a linear path of detachment. Gecko setae resist detachment when dragged towards the animal during detachment (theta = 30 degrees ) requiring W(d) = 5.0+/-0.86(s.e.) J m(-2) to detach, largely due to frictional losses. This external frictional loss is analogous to viscous internal frictional losses during detachment of pressure-sensitive adhesives. We found that, remarkably, setae possess a built-in release mechanism. Setae acted as springs when loaded in tension during attachment and returned elastic energy when detached along the optimal path (theta=130 degrees ), resulting in W(d) = -0.8+/-0.12 J m(-2). The release of elastic energy from the setal shaft probably causes spontaneous release, suggesting that curved shafts may enable easy detachment in natural, and synthetic, gecko adhesives.
منابع مشابه
Using Setal Micromechanics to Predict Gecko Adhesive Performance
INTRODUCTION The fibrillar adhesive toe pads of geckos enable extraordinary climbing abilities via strong attachment and rapid detachment. Previous research using a single species, Gekko gecko, proposed that the adhesive system could be modeled as an array of cantilever beam-like elements. In this study, we examined the similarities and differences in setal morphology and performance between Ge...
متن کاملGecko adhesion: evolutionary nanotechnology.
If geckos had not evolved, it is possible that humans would never have invented adhesive nanostructures. Geckos use millions of adhesive setae on their toes to climb vertical surfaces at speeds of over 1ms-1. Climbing presents a significant challenge for an adhesive in requiring both strong attachment and easy rapid removal. Conventional pressure-sensitive adhesives (PSAs) are either strong and...
متن کاملFrictional adhesion: A new angle on gecko attachment.
Directional arrays of branched microscopic setae constitute a dry adhesive on the toes of pad-bearing geckos, nature's supreme climbers. Geckos are easily and rapidly able to detach their toes as they climb. There are two known mechanisms of detachment: (1) on the microscale, the seta detaches when the shaft reaches a critical angle with the substrate, and (2) on the macroscale, geckos hyperext...
متن کاملMicroscopic modeling of the dynamics of frictional adhesion in the gecko attachment system.
We present a simple microscopic model describing the unique friction behavior of gecko setal arrays as they are dragged on smooth surfaces. Unlike other solids of high elastic modulus that do not stick under van der Waals forces alone, the gecko setal arrays do not require a compressive force to display a drag resistance but rather develop a tensile normal force when they are dragged (J. Experi...
متن کاملExperimental investigation of the effect of tip shape in gecko-inspired adhesive devices under asymmetric detachment
Background It is usually challenging to achieve surfaces that are highly adhesive, yet can be detached easily. Geckos’ foot hairs, however, can be easily detached from a surface even though they adhere to it strongly enough to hold the animal’s body against gravity. Inspired by Nature, a combination of strong adhesion and easy detachment in adhesion system can be achieved and the possibility of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 5 20 شماره
صفحات -
تاریخ انتشار 2008