An Oxalyl-CoA Synthetase is Involved in Oxalate Degradation and Aluminum

نویسندگان

  • Jian Li Yang
  • He Qiang Lou
  • Wei Fan
  • Jia Meng Xu
  • Yu Long Gong
  • Jian Feng Jin
  • Wei Wei
  • Mei Rong Hai
  • Shao Jian Zheng
چکیده

Running head: An oxalyl-CoA synthetase confers Aluminum tolerance 1 2 Corresponding author: 3 Name: Jian Li Yang 4 5 Address: State Key Laboratory of Plant Physiology and Biochemistry, College of Life 6 Sciences, Zhejiang University, Hangzhou 310058, China 7 Telephone number: +86-571-88206438 8 e-mail: [email protected] 9 10 Research area: 11 Ecophysiology and Sustainability 12 13 Plant Physiology Preview. Published on September 20, 2016, as DOI:10.1104/pp.16.01106

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Oxalyl-CoA Synthetase Is Involved in Oxalate Degradation and Aluminum Tolerance.

Acyl Activating Enzyme3 (AAE3) was identified to be involved in the catabolism of oxalate, which is critical for seed development and defense against fungal pathogens. However, the role of AAE3 protein in abiotic stress responses is unknown. Here, we investigated the role of rice bean (Vigna umbellata) VuAAE3 in Al tolerance. Recombinant VuAAE3 protein has specific activity against oxalate, wit...

متن کامل

A previously unknown oxalyl-CoA synthetase is important for oxalate catabolism in Arabidopsis.

Oxalate is produced by several catabolic pathways in plants. The best characterized pathway for subsequent oxalate degradation is via oxalate oxidase, but some species, such as Arabidopsis thaliana, have no oxalate oxidase activity. Previously, an alternative pathway was proposed in which oxalyl-CoA synthetase (EC 6.2.1.8) catalyzes the first step, but no gene encoding this function has been fo...

متن کامل

An Oxalyl-CoA Dependent Pathway of Oxalate Catabolism Plays a Role in Regulating Calcium Oxalate Crystal Accumulation and Defending against Oxalate-Secreting Phytopathogens in Medicago truncatula

Considering the widespread occurrence of oxalate in nature and its broad impact on a host of organisms, it is surprising that so little is known about the turnover of this important acid. In plants, oxalate oxidase is the most well studied enzyme capable of degrading oxalate, but not all plants possess this activity. Recently, an Acyl Activating Enzyme 3 (AAE3), encoding an oxalyl-CoA synthetas...

متن کامل

Oxalyl-coenzyme A reduction to glyoxylate is the preferred route of oxalate assimilation in Methylobacterium extorquens AM1.

Oxalate catabolism is conducted by phylogenetically diverse organisms, including Methylobacterium extorquens AM1. Here, we investigate the central metabolism of this alphaproteobacterium during growth on oxalate by using proteomics, mutant characterization, and (13)C-labeling experiments. Our results confirm that energy conservation proceeds as previously described for M. extorquens AM1 and oth...

متن کامل

An ATP and Oxalate Generating Variant Tricarboxylic Acid Cycle Counters Aluminum Toxicity in Pseudomonas fluorescens

Although the tricarboxylic acid (TCA) cycle is essential in almost all aerobic organisms, its precise modulation and integration in global cellular metabolism is not fully understood. Here, we report on an alternative TCA cycle uniquely aimed at generating ATP and oxalate, two metabolites critical for the survival of Pseudomonas fluorescens. The upregulation of isocitrate lyase (ICL) and acylat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016