A novel KLF4/LDHA signaling pathway regulates aerobic glycolysis in and progression of pancreatic cancer.
نویسندگان
چکیده
PURPOSE Krüppel-like factor 4 (KLF4) is a transcription factor and putative tumor suppressor. However, little is known about its effect on aerobic glycolysis in pancreatic tumors. Therefore, we investigated the clinical significance, biologic effects, and mechanisms of dysregulated KLF4 signaling in aerobic glycolysis in pancreatic cancer cells. EXPERIMENTAL DESIGN Expression of KLF4 and lactate dehydrogenase A (LDHA) in 70 primary pancreatic tumors and 10 normal pancreatic tissue specimens was measured. Also, the underlying mechanisms of altered KLF4 expression and its impact on aerobic glycolysis in pancreatic cancer cells were investigated. RESULTS We found a negative correlation between KLF4 and LDHA expression in pancreatic cancer cells and tissues and that their expression was associated with clinicopathologic features of pancreatic cancer. KLF4 underexpression and LDHA overexpression were correlated with disease stage and tumor differentiation. Experimentally, KLF4 overexpression significantly attenuated the aerobic glycolysis in and growth of pancreatic cancer cells both in vitro and in orthotopic mouse models, whereas knockdown of KLF4 expression had the opposite effect. Enforced KLF4 expression decreased LDHA expression, whereas small interfering RNA-mediated knockdown of KLF4 expression had the opposite effect. Mechanistically, KLF4 bound directly to the promoter regions of the LDHA gene and negatively regulated its transcription activity. CONCLUSIONS Dysregulated signaling in this novel KLF4/LDHA pathway significantly impacts aerobic glycolysis in and development and progression of pancreatic cancer.
منابع مشابه
The c-Myc–LDHA axis positively regulates aerobic glycolysis and promotes tumor progression in pancreatic cancer
The transcription factor c-Myc plays critical roles in cancer development and progression through regulating expression of targeted genes. Lactate dehydrogenase A (LDHA), which catalyzes the conversion of L-lactate to pyruvate in the final step of anaerobic glycolysis, is frequently upregulated in pancreatic cancer. However, little is known about the effects of c-Myc-LDHA axis in the progressio...
متن کاملFOXM1 promotes the warburg effect and pancreatic cancer progression via transactivation of LDHA expression.
PURPOSE The transcription factor Forkhead box protein M1 (FOXM1) plays critical roles in cancer development and progression. However, the regulatory role and underlying mechanisms of FOXM1 in cancer metabolism are unknown. In this study, we characterized the regulation of aerobic glycolysis by FOXM1 and its impact on pancreatic cancer metabolism. EXPERIMENTAL DESIGN The effect of altered expr...
متن کاملHuman Cancer Biology FOXM1 Promotes theWarburg Effect and Pancreatic Cancer Progression via Transactivation of LDHA Expression
Purpose: The transcription factor Forkhead box protein M1 (FOXM1) plays critical roles in cancer development and progression. However, the regulatory role and underlying mechanisms of FOXM1 in cancer metabolism are unknown. In this study, we characterized the regulation of aerobic glycolysis by FOXM1 and its impact on pancreatic cancer metabolism. Experimental Design: The effect of altered expr...
متن کاملThe miR-383-LDHA axis regulates cell proliferation, invasion and glycolysis in hepatocellular cancer
Objective(s): To explore the correlation between expression patterns and functions of miR-383 and LDHA in hepatocellular cancer (HCC). Materials and Methods: We detected the expression of miR-383 and LDHA in 30 HCC tissues and their matched adjacent normal tissues using qRT-PCR. Then we performed MTT assay, foci formation assay, transwell migration assay, glucose uptake assay and lactate produc...
متن کاملMolecular Pathways: Targeting Cellular Energy Metabolism in Cancer via Inhibition of SLC2A1 and LDHA.
Reprogramming of cellular energy metabolism is widely accepted to be one of the main hallmarks of cancer. The aberrant expression pattern of key regulators in the glycolysis pathway in cancer cells corroborates with the hypothesis that most cancer cells utilize aerobic glycolysis as their main ATP production method instead of mitochondrial oxidative phosphorylation. Overexpression of SLC2A1 and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 20 16 شماره
صفحات -
تاریخ انتشار 2014