Dynasore Protects Mitochondria and Improves Cardiac Lusitropy in Langendorff Perfused Mouse Heart

نویسندگان

  • Danchen Gao
  • Li Zhang
  • Ranvir Dhillon
  • Ting-Ting Hong
  • Robin M. Shaw
  • Jianhua Zhu
چکیده

BACKGROUND Heart failure due to diastolic dysfunction exacts a major economic, morbidity and mortality burden in the United States. Therapeutic agents to improve diastolic dysfunction are limited. It was recently found that Dynamin related protein 1 (Drp1) mediates mitochondrial fission during ischemia/reperfusion (I/R) injury, whereas inhibition of Drp1 decreases myocardial infarct size. We hypothesized that Dynasore, a small noncompetitive dynamin GTPase inhibitor, could have beneficial effects on cardiac physiology during I/R injury. METHODS AND RESULTS In Langendorff perfused mouse hearts subjected to I/R (30 minutes of global ischemia followed by 1 hour of reperfusion), pretreatment with 1 µM Dynasore prevented I/R induced elevation of left ventricular end diastolic pressure (LVEDP), indicating a significant and specific lusitropic effect. Dynasore also decreased cardiac troponin I efflux during reperfusion and reduced infarct size. In cultured adult mouse cardiomyocytes subjected to oxidative stress, Dynasore increased cardiomyocyte survival and viability identified by trypan blue exclusion assay and reduced cellular Adenosine triphosphate(ATP) depletion. Moreover, in cultured cells, Dynasore pretreatment protected mitochondrial fragmentation induced by oxidative stress. CONCLUSION Dynasore protects cardiac lusitropy and limits cell damage through a mechanism that maintains mitochondrial morphology and intracellular ATP in stressed cells. Mitochondrial protection through an agent such as Dynasore can have clinical benefit by positively influencing the energetics of diastolic dysfunction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of endotoxemia on heart rate dynamics in rat isolated perfused hearts

Introduction: Beat-to-beat variation in heart rate shows a complex dynamics, and this complexity is changed during systemic inflammatory response syndrome (e.g. sepsis). It is not known whether or not cardiac pacemaker dynamical rhythm is affected by sepsis. The aim of this study was to investigate heart rate dynamics of isolated heart as well as expression of pacemaker channels (HCN) in a r...

متن کامل

Effects of L-Carnitine on Cardiac Apoptosis in Ischemic- Reperfused Isolated Rat Heart

     Carnitine is a vital biologic substance for transporting fatty acids into myocytes. It also facilitates fatty acids β-oxidation for energy production. In this study, effects of L-carnitine (L-Car) on apoptosis in the ischemic isolated rat heart were investigated. Male Sprague-Dawley rats were divided into four groups and anesthetized by sodium pentobarbital. The heart was removed and mount...

متن کامل

Hexokinase II and reperfusion injury: TAT-HK2 peptide impairs vascular function in Langendorff-perfused rat hearts.

RATIONALE Mitochondrial-bound hexokinase II (HK2) was recently proposed to play a crucial role in the normal functioning of the beating heart and to be necessary to maintain mitochondrial membrane potential. However, our own studies confirmed that mitochondria from ischemic rat hearts were HK2-depleted, yet showed no indication of depolarization and responded normally to ADP. OBJECTIVE To est...

متن کامل

Effects of Acetyl-L-Carnitine on Cardiac Arrhythmias and Infarct Size in Ischemic-Reperfused Isolated Rat Heart

Objective(s) This study aimed to examine whether acetyl-L-carnitine (ALC) was able to reduce cardiac arrhythmias and infarct size in the ischemic-reperfused isolated rat heart. Materials and Methods The isolated hearts were mounted on a Langendorff apparatus then perfused by a modified Krebs-Henseleit solution during 30 min regional ischemia and 120 min reperfusion (control) or by enriched K...

متن کامل

Nanoparticle‐Mediated Delivery of Mitochondrial Division Inhibitor 1 to the Myocardium Protects the Heart From Ischemia‐Reperfusion Injury Through Inhibition of Mitochondria Outer Membrane Permeabilization: A New Therapeutic Modality for Acute Myocardial Infarction

BACKGROUND Mitochondria-mediated cell death plays a critical role in myocardial ischemia-reperfusion (IR) injury. We hypothesized that nanoparticle-mediated drug delivery of mitochondrial division inhibitor 1 (Mdivi1) protects hearts from IR injury through inhibition of mitochondria outer membrane permeabilization (MOMP), which causes mitochondrial-mediated cell death. METHODS AND RESULTS We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013