Whole body sodium MRI at 3T using an asymmetric birdcage resonator and short echo time sequence: first images of a male volunteer.
نویسندگان
چکیده
Sodium magnetic resonance imaging (²³Na MRI) is a non-invasive technique which allows spatial resolution of the tissue sodium concentration (TSC) in the human body. TSC measurements could potentially serve to monitor early treatment success of chemotherapy on patients who suffer from whole body metastases. Yet, the acquisition of whole body sodium (²³Na) images has been hampered so far by the lack of large resonators and the extremely low signal-to-noise ratio (SNR) achieved with existing resonator systems. In this study, a ²³Na resonator was constructed for whole body ²³Na MRI at 3T comprising of a 16-leg, asymmetrical birdcage structure with 34 cm height, 47.5 cm width and 50 cm length. The resonator was driven in quadrature mode and could be used either as a transceiver resonator or, since active decoupling was included, as a transmit-only resonator in conjunction with a receive-only (RO) surface resonator. The relative B₁-field profile was simulated and measured on phantoms, and 3D whole body ²³Na MRI data of a healthy male volunteer were acquired in five segments with a nominal isotropic resolution of (6 × 6 × 6) mm³ and a 10 min acquisition time per scan. The measured SNR values in the ²³Na-MR images varied from 9 ± 2 in calf muscle, 15 ± 2 in brain tissue, 23 ± 2 in the prostate and up to 42 ± 5 in the vertebral discs. Arms, legs, knees and hands could also be resolved with applied resonator and short time-to-echo (TE) (0.5 ms) radial sequence. Up to fivefold SNR improvement was achieved through combining the birdcage with local RO surface coil. In conclusion, ²³Na MRI of the entire human body provides sub-cm spatial resolution, which allows resolution of all major human body parts with a scan time of less than 60 min.
منابع مشابه
A dual resonator system for whole-body sodium-MRI at 3T
INTRODUCTION: Na-MRI (Na-MRI) can provide unique and direct information about the tissue viability after stroke [1], and the integrity of tumor tissue [2]. Nevertheless, clinical routine use of Na-MRI techniques is mostly hindered by the required specialized resonator systems. Especially the lack of available homogeneous B1-field excitation at the Na frequency limits the day to day use of these...
متن کاملAssessment of the Characteristics of MRI Coils in Terms of RF Non-Homogeneity Using Routine Spin Echo Sequences
Introduction: One of the major causes of image non-uniformity in MRI is due to the existence of non-homogeneity in RF receive and transmit. This can be the most effective source of error in quantitative studies in MRI imaging. Part of this non-homogeneity demonstrates the characteristics of RF coil and part of it is due to the interaction of RF field with the material being imaged...
متن کاملEffect of Echo Time on the Maximum Relationship between Contrast Agent Concentration and Signal Intensity Using FLAIR Sequence
Introduction Contrast-enhanced fluid-attenuated inversion recovery (FLAIR) is one of the MRI sequences that can be used for detection and evaluation of pathological changes in the brain. In this work, we have studied the effect of different echo times (TE) on the maximum relationship between signal intensity and concentration of the contrast agent using the FLAIR sequence. Materials and Methods...
متن کاملSlotted end-ring volume coil for small animal Magnetic Resonance Imaging at 7T
Introduction. The development of transceiver volume coils for high field MRI is still a very dynamic field of investigation and development. A volume coil based on the high frequency cavity resonator [1] is presented in this paper for whole-body MRI of rodents at 7 Tesla (proton frequency: 299.47 MHz). This coil design has been previously tested on phantoms at 170 MHz (4T for protons) with stan...
متن کاملNon-invasive quantification of liver fat content by different Gradient Echo MRI sequences in patients with Non-Alcoholic Fatty Liver Disease (NAFLD)
Introduction: Non-invasive quantification of liver fat by Gradient echo (GRE) Technique is an interesting issue in quantitative MRI. Despite the numerous advantages of this technique, fat measurement maybe biased by confounding and effects. The aim of this study was to evaluate the GRE pulse sequences with different and weighting for liver fat quantification in patients with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 57 14 شماره
صفحات -
تاریخ انتشار 2012