Chloroquine, an autophagy inhibitor, potentiates the radiosensitivity of glioma initiating cells by inhibiting autophagy and activating apoptosis
نویسندگان
چکیده
BACKGROUND Glioblastoma is refractory to conventional treatment, which is combined of surgery, chemotherapy and radiotherapy. Recent studies have shown that glioma initiating cells (GICs) contribute to tumorigenesis and radioresistance. Recently, other studies showed that the GICs use the autophagy as the major pathway to survive. Chloroquine, an anti-malarial chemical, is an autophagic inhibitor which blocks autophagosome fusion with lysosome and slows down lysosomal acidification. The aim of this study was to explore the mechanisms of chloroquine on the radiosensitivity of GICs. METHODS Human glioblastoma cell lines U87 were investigated. MTT and clonogenic survival assay were used to evaluate the cell viability and survival from radiation. The formation of autophagosomes were evaluated by immunofluorescence. Annexin V-FITC/PI staining and flow cytometry were used to quantify the apoptotic cells. The expression levels of proteins were analyzed by Western blot. Cell cycle status was analyzed by checking DNA content after staining with PI. A comet assay was used to assess the DNA repair in the cells. Tumorsphere assay was used for evaluating GICs' renewal ability. RESULTS Treatment of U87 GICs with chloroquine (10-80 nmol/L) alone inhibited the cell growth in a dose-dependent manner. A dose of chloroquine (20 nmol/L) obviously enhanced the radiation sensitivity of U87 GICs., we found more punctate patterns of microtubule-associated protein LC3 immunoreactivity in radiation-treated U87 GICs, and the level of membrane-bound LC3-II was obviously enhanced. A combination of radiation and chloroquine obviously enhanced the U87 GICs' apoptosis, as demonstrated by the enhanced levels of caspase-3, and reduced level of Bcl-2. In additon, combination of radiation and chloroquine cause G1/G0 cell cycle arrest. what's more, Chloroquine obviously weakened the repair of radiation-induced DNA damage as reflected by the tail length of the comet. Combination treatment of irradiation and chloroquine has synergistic effects on decreasing the GICs' tumorsphere number and diameter. CONCLUSION Chloroquine enhances the radiosensitivity of GICs in vitro, suggesting the feasibility of joint treatment with chloroquine with radiation for GBM.
منابع مشابه
Radiosensitizing effect of deferoxamine on human glioma cells
ABSTRACT Background: Tumor cells exhibit an increased requirement for iron to support their rapid proliferation. Deferoxamine (DFO), an iron chelator, has been reported to have anti-proliferative effects on cancer cells through induction of apoptosis and cell cycle arrest. X-rays also induce apoptosis and cell cycle arrest. However, limited information is available regarding the effect of iron...
متن کاملThymoquinone synergistically potentiates temozolomide cytotoxicity through the inhibition of autophagy in U87MG cell line
Objective(s): Glioblastoma multiforme (GBM) is one of the most lethal forms of human cancer and temozolomide (TMZ) is currently part of the standard treatment for this disease. Combination therapy using natural substances can enhance the anti-cancer activity of TMZ. The purpose of this study was to evaluate the effect of TMZ in combination with thymoquinone (TQ) on human GBM cell line (U87MG). ...
متن کاملCarcinoembryonic Antigen Expression and Resistance to Radiation-and 5-Fluorouracil-Induced Apoptosis and Autophagy
Understanding the mechanism of tumor resistance is critical for cancer therapy. In this study, we investigated the effect of carcinoembryonic antigen (CEA) overexpression on UV-and 5-fluorouracil (5-FU)-induced apoptosis and autophagy in colorectal cancer cells. We used histone deacetylase (HDAC) inhibitor, NaB and DNA demethylating agent, 5- azacytidine (5-AZA) to induce CEA expression in HT29...
متن کاملData analyses of honokiol-induced autophagy of human glioma cells in vitro and in vivo
This article contains raw and processed data related to a research, "Honokiol induces autophagic cell death in malignant glioma through reactive oxygen species-mediated regulation of the p53/PI3K/Akt/mTOR signaling pathway" (C.J. Lin, T.L. Chen, Y.Y. Tseng, G.J. Wu, M.H. Hsieh, Y.W. Lin, R.M. Chen, 2016) [1]. Data were obtained by immunoblotting analyses of light chain 3 (LC3)-II, beclin-1, Akt...
متن کاملChloroquine or Chloroquine-PI3K/Akt Pathway Inhibitor Combinations Strongly Promote γ-Irradiation-Induced Cell Death in Primary Stem-Like Glioma Cells
We asked whether inhibitors of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which is highly active in cancer stem cells (CSCs) and upregulated in response to genotoxic treatments, promote γ-irradiationγIR)-induced cell death in highly radioresistant, patient-derived stem-like glioma cells (SLGCs). Surprisingly, in most cases the inhibitors did not promote γIR-induced cell death. In con...
متن کامل