Two optimal one-error-correcting codes of length 13 that are not doubly shortened perfect codes

نویسندگان

  • Patric R. J. Östergård
  • Olli Pottonen
چکیده

The doubly shortened perfect codes of length 13 are classified utilizing the classification of perfect codes in [P.R.J. Österg̊ard and O. Pottonen, The perfect binary one-error-correcting codes of length 15: Part I— Classification, IEEE Trans. Inform. Theory, to appear]; there are 117821 such (13,512,3) codes. By applying a switching operation to those codes, two more (13,512,3) codes are obtained, which are then not doubly shortened perfect codes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Optimal Binary One-Error-Correcting Codes of Lengths

Best and Brouwer [Discrete Math. 17 (1977), 235– 245] proved that triply-shortened and doubly-shortened binary Hamming codes (which have length 2m − 4 and 2m − 3, respectively) are optimal. Properties of such codes are here studied, determining among other things parameters of certain subcodes. A utilization of these properties makes a computeraided classification of the optimal binary one-erro...

متن کامل

On Optimal Binary One-Error-Correcting Codes of Lengths $2^m-4$ and $2^m-3$

Best and Brouwer [Discrete Math. 17 (1977), 235– 245] proved that triply-shortened and doubly-shortened binary Hamming codes (which have length 2m − 4 and 2m − 3, respectively) are optimal. Properties of such codes are here studied, determining among other things parameters of certain subcodes. A utilization of these properties makes a computeraided classification of the optimal binary one-erro...

متن کامل

The Perfect Binary One-Error-Correcting Codes of Length 15: Part I--Classification

A complete classification of the perfect binary one-error-correcting codes of length 15 as well as their extensions of length 16 is presented. There are 5 983 such inequivalent perfect codes and 2 165 extended perfect codes. Efficient generation of these codes relies on the recent classification of Steiner quadruple systems of order 16. Utilizing a result of Blackmore, the optimal binary one-er...

متن کامل

One-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes

We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...

متن کامل

The Perfect Binary One-Error-Correcting Codes of Length 15: Part II--Properties

A complete classification of the perfect binary oneerror-correcting codes of length 15 as well as their extensions of length 16 was recently carried out in [P. R. J. Östergård and O. Pottonen, “The perfect binary one-error-correcting codes of length 15: Part I—Classification,” submitted for publication]. In the current accompanying work, the classified codes are studied in great detail, and the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2011