Two optimal one-error-correcting codes of length 13 that are not doubly shortened perfect codes
نویسندگان
چکیده
The doubly shortened perfect codes of length 13 are classified utilizing the classification of perfect codes in [P.R.J. Österg̊ard and O. Pottonen, The perfect binary one-error-correcting codes of length 15: Part I— Classification, IEEE Trans. Inform. Theory, to appear]; there are 117821 such (13,512,3) codes. By applying a switching operation to those codes, two more (13,512,3) codes are obtained, which are then not doubly shortened perfect codes.
منابع مشابه
On Optimal Binary One-Error-Correcting Codes of Lengths
Best and Brouwer [Discrete Math. 17 (1977), 235– 245] proved that triply-shortened and doubly-shortened binary Hamming codes (which have length 2m − 4 and 2m − 3, respectively) are optimal. Properties of such codes are here studied, determining among other things parameters of certain subcodes. A utilization of these properties makes a computeraided classification of the optimal binary one-erro...
متن کاملOn Optimal Binary One-Error-Correcting Codes of Lengths $2^m-4$ and $2^m-3$
Best and Brouwer [Discrete Math. 17 (1977), 235– 245] proved that triply-shortened and doubly-shortened binary Hamming codes (which have length 2m − 4 and 2m − 3, respectively) are optimal. Properties of such codes are here studied, determining among other things parameters of certain subcodes. A utilization of these properties makes a computeraided classification of the optimal binary one-erro...
متن کاملThe Perfect Binary One-Error-Correcting Codes of Length 15: Part I--Classification
A complete classification of the perfect binary one-error-correcting codes of length 15 as well as their extensions of length 16 is presented. There are 5 983 such inequivalent perfect codes and 2 165 extended perfect codes. Efficient generation of these codes relies on the recent classification of Steiner quadruple systems of order 16. Utilizing a result of Blackmore, the optimal binary one-er...
متن کاملOne-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes
We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...
متن کاملThe Perfect Binary One-Error-Correcting Codes of Length 15: Part II--Properties
A complete classification of the perfect binary oneerror-correcting codes of length 15 as well as their extensions of length 16 was recently carried out in [P. R. J. Östergård and O. Pottonen, “The perfect binary one-error-correcting codes of length 15: Part I—Classification,” submitted for publication]. In the current accompanying work, the classified codes are studied in great detail, and the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Des. Codes Cryptography
دوره 59 شماره
صفحات -
تاریخ انتشار 2011