Using ancestry matching to combine family-based and unrelated samples for genome-wide association studies.
نویسندگان
چکیده
We propose a method to analyze family-based samples together with unrelated cases and controls. The method builds on the idea of matched case-control analysis using conditional logistic regression (CLR). For each trio within the family, a case (the proband) and matched pseudo-controls are constructed, based upon the transmitted and untransmitted alleles. Unrelated controls, matched by genetic ancestry, supplement the sample of pseudo-controls; likewise unrelated cases are also paired with genetically matched controls. Within each matched stratum, the case genotype is contrasted with control/pseudo-control genotypes via CLR, using a method we call matched-CLR (mCLR). Eigenanalysis of numerous SNP genotypes provides a tool for mapping genetic ancestry. The result of such an analysis can be thought of as a multidimensional map, or eigenmap, in which the relative genetic similarities and differences amongst individuals is encoded in the map. Once constructed, new individuals can be projected onto the ancestry map based on their genotypes. Successful differentiation of individuals of distinct ancestry depends on having a diverse, yet representative sample from which to construct the ancestry map. Once samples are well-matched, mCLR yields comparable power to competing methods while ensuring excellent control over Type I error.
منابع مشابه
On the meta-analysis of genome-wide association studies: a robust and efficient approach to combine population and family-based studies.
For the meta-analysis of genome-wide association studies, we propose a new method to adjust for the population stratification and a linear mixed approach that combines family-based and unrelated samples. The proposed approach achieves similar power levels as a standard meta-analysis which combines the different test statistics or p values across studies. However, by virtue of its design, the pr...
متن کاملGenome-wide Association Study to Identify Genes and Biological Pathways Associated with Type Traits in Cattle using Pathway Analysis
Extended Abstract Introduction and Objective: Type traits describing the skeletal characteristics of an animal are moderately to strongly genetically correlate with other economically important traits in cattle including fertility, longevity and carcass traits. The present study aimed to conduct a genome wide association studies (GWAS) based on gene-set enrichment analysis for identifying the ...
متن کاملAssessing the impact of global versus local ancestry in association studies
BACKGROUND To account for population stratification in association studies, principal-components analysis is often performed on single-nucleotide polymorphisms (SNPs) across the genome. Here, we use Framingham Heart Study (FHS) Genetic Analysis Workshop 16 data to compare the performance of local ancestry adjustment for population stratification based on principal components (PCs) estimated fro...
متن کاملPopulation Stratification in the Context of Diverse Epidemiologic Surveys Sans Genome-Wide Data
Population stratification or confounding by genetic ancestry is a potential cause of false associations in genetic association studies. Estimation of and adjustment for genetic ancestry has become common practice thanks in part to the availability of ancestry informative markers on genome-wide association study (GWAS) arrays. While array data is now widespread, these data are not ubiquitous as ...
متن کاملGenome-Wide Association and Linkage Analysis of Quantitative Traits: Comparison pf Likelihood-Ratio Test and Conditional Score Statistic
Over the past decade, genetic analysis has shifted from linkage studies, which identify broad regions containing putative trait loci, to genome-wide association studies, which detect the association of a marker with a specific phenotype. Because linkage and association analysis provide complementary information, developing a method to combine these analyses may increase the power to detect a tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics in medicine
دوره 29 28 شماره
صفحات -
تاریخ انتشار 2010