Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments.

نویسندگان

  • Taqiyyah S Safi
  • Jeremy N Munday
چکیده

The method of detailed balance, introduced by Shockley and Queisser, is often used to find an upper theoretical limit for the efficiency of semiconductor pn-junction based photovoltaics. Typically the solar cell is assumed to be at an ambient temperature of 300 K. In this paper, we describe and analyze the use of radiative cooling techniques to lower the solar cell temperature below the ambient to surpass the detailed balance limit for a cell in contact with an ideal heat sink. We show that by combining specifically designed radiative cooling structures with solar cells, efficiencies higher than the limiting efficiency achievable at 300 K can be obtained for solar cells in both terrestrial and extraterrestrial environments. We show that our proposed structure yields an efficiency 0.87% higher than a typical PV module at operating temperatures in a terrestrial application. We also demonstrate an efficiency advantage of 0.4-2.6% for solar cells in an extraterrestrial environment in near-earth orbit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantification of Thermal Energy Performance Improvement for Building Integrated Photovoltaic Double-Skin Façade Using Analytical Method

In this research, an analytical method for quantification of the thermal energy performance improvement for a building integrated photovoltaic double-skin façade has provided. The system has been suggested as a retrofit measure for an existing building in Tehran. The effect of thermal performance has been analyzed through computer-assisted developed code using engineering equation solver softwa...

متن کامل

Cooling Enhancement of a Photovoltaic Panel Through Ferrofluid Stimulation Using a Magnetic-Wind Turbine

Wind energy is used to rotate a magnetic turbine in order to remove heat from the surface of a photovoltaic (PV) panel. A three-bladed turbine, which rotates with wind energy, has rotational motion underneath the studied PV panel in order to move Magnetic Nano-Particles (MNPs). In addition, effects of the magnetic field strength (B=450-830 mT), rotational velocity of the magnetic turbine (ω), a...

متن کامل

Investigation of Radiative Cooling Using a Photonic Composite Material for Water Harvesting

The objective of this study is to design and analyse materials which are capable of harvesting water from thin air using condensation phenomenon which employs the radiative cooling approach. These passive cooling materials not only solve the water generating problems, but also employed in various cooling applications. The fundamental concept of radiative cooling is analysed and the performance ...

متن کامل

Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling.

If properly designed, terrestrial structures can passively cool themselves through radiative emission of heat to outer space. For the first time, we present a metal-dielectric photonic structure capable of radiative cooling in daytime outdoor conditions. The structure behaves as a broadband mirror for solar light, while simultaneously emitting strongly in the mid-IR within the atmospheric trans...

متن کامل

Heat Transfer Study of Convective-Radiative Fin under the influence of Magnetic Field using Legendre Wavelet Collocation Method

The development and production of high performance equipment necessitate the use of passive cooling technology. In this paper, heat transfer study of convective-radiative straight fin with temperature-dependent thermal conductivity under the influence of magnetic field is carried out using Legendre wavelet collocation method. The numerical solution is used to investigate the effects of magnetic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 23 19  شماره 

صفحات  -

تاریخ انتشار 2015