Refining Markov Clustering for protein complex prediction by incorporating core-attachment structure.

نویسندگان

  • Sriganesh Srihari
  • Kang Ning
  • Hon Wai Leong
چکیده

Protein complexes are responsible for most of vital biological processes within the cell. Understanding the machinery behind these biological processes requires detection and analysis of complexes and their constituent proteins. A wealth of computational approaches towards detection of complexes deal with clustering of protein-protein interaction (PPI) networks. Among these clustering approaches, the Markov Clustering (MCL) algorithm has proved to be reasonably successful, mainly due to its scalability and robustness. However, MCL produces many noisy clusters, which either do not represent any known complexes or have additional proteins (noise) that reduce the accuracies of correctly predicted complexes. Consequently, the accuracies of these clusters when matched with known complexes are quite low. Refinement of these clusters to improve the accuracy requires deeper understanding of the organization of complexes. Recently, experiments on yeast by Gavin et al. (2006) revealed that proteins within a complex are organized in two parts: core and attachment. Based on these insights, we propose our method (MCL-CA), which couples core-attachment based refinement steps to refine the clusters produced by MCL. We evaluated the effectiveness of our approach on two different datasets and compared the quality of our predicted complexes with that produced by MCL. The results show that our approach significantly improves the accuracies of predicted complexes when matched with known complexes. A direct result of this is that MCL-CA is able to cover larger number of known complexes than MCL. Further, we also compare our method with two very recently proposed methods CORE and COACH, which also capitalize on the core-attachment structure. We also discuss several instances to show that our predicted complexes clearly adhere to the core-attachment structure as revealed by Gavin et al.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Propensity based classification: Dehalogenase and non-dehalogenase enzymes

The present work was designed to classify and differentiate between the dehalogenase enzyme to non–dehalogenases (other hydrolases) by taking the amino acid propensity at the core, surface and both the parts. The data sets were made on an individual basis by selecting the 3D structures of protein available in the PDB (Protein Data Bank). The prediction of the core amino acid were predicted by I...

متن کامل

Integrating Markov Model with Clustering for Predicting Web Page Accesses

Predicting the next page to be accessed by Web users has attracted a large amount of research work lately due to the positive impact of such prediction on different areas of Web based applications. Major techniques applied for this intention are Markov model and clustering. Low order Markov models are coupled with low accuracy, whereas high order Markov models are associated with high state spa...

متن کامل

Incorporating Global Information into Secondary Structure Prediction with Hidden Markov Models of Protein Folds

Here we propose an approach to include global structural information in the secondary structure prediction procedure based on hidden Markov models (HMMs) of protein folds. We first identify the correct fold or 'topology' of a protein by means of the HMMs of topology families of proteins. Then the most likely structural model for that protein is used to modify the sequence of secondary structure...

متن کامل

Bayesian Segmental Models with Alignment Profiles for Protein Secondary Structure Prediction

In this paper, we develop segmental semi-Markov models (SSMM) to exploit alignment profiles for protein secondary structure prediction. A novel parameterized model is proposed as the likelihood function for the SSMM to capture the segmental conformation from the profiles. By incorporating the information of long range interactions in β-sheets, this model is capable to carry out inference on con...

متن کامل

Evolutionary Rate Heterogeneity of Core and Attachment Proteins in Yeast Protein Complexes

In general, proteins do not work alone; they form macromolecular complexes to play fundamental roles in diverse cellular functions. On the basis of their iterative clustering procedure and frequency of occurrence in the macromolecular complexes, the protein subunits have been categorized as core and attachment. Core protein subunits are the main functional elements, whereas attachment proteins ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genome informatics. International Conference on Genome Informatics

دوره 23 1  شماره 

صفحات  -

تاریخ انتشار 2009