Surfactants tailored by the class Actinobacteria
نویسندگان
چکیده
Globally the change towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application.
منابع مشابه
Tailored ionic liquid-based surfactants for the formation of microemulsions with water and a hydrophobic ionic liquid.
Microemulsions (μe) with water and a hydrophobic ionic liquid (IL) usually require 45-60 wt% surfactant to solubilize equal amounts of water and IL. To increase the efficiency we designed a new class of surfactants by combining a hydrophilic but IL-ophobic carbohydrate-based part with a hydrophobic but IL-ophilic IL-based part. These surfactants allow formulating microemulsions with 20 wt% surf...
متن کاملEditorial: Microbiotechnology Based Surfactants and Their Applications
This editorial is an annotation on the exciting research topic " Microbiotechnology based surfactants and their applications " that covers a compilation of original research articles, reviews and mini-reviews submitted by researchers enthusiastically working in the field of biosurfactants. Biosurfactants, which for a long time have been confused with bioemulsifiers, derived their name from biol...
متن کاملA Laboratory Investigation into Wettability Alteration of Carbonate Rock by Surfactants: The Effect of Salinity, pH, and Surfactant Concentration
Wettability alteration is an important method for increasing oil recovery from oil-wet carbonate reservoirs. Chemical agents like surfactants are known as wettability modifiers in carbonate systems. Oil can be recovered from initially oil-wet carbonate reservoirs by wettability alteration from oil-wet to water-wet condition with adding dilute surfactant and electrolyte solutions. This paper inv...
متن کاملThe Power of Biocatalysis: A One‐Pot Total Synthesis of Rhamnolipids from Butane as the Sole Carbon and Energy Source
Microbially derived surfactants, so-called biosurfactants, have drawn much attention in recent years and are expected to replace current petrochemical surfactants, owing to their environmental and toxicological benefits. One strategy to support that goal is to reduce production costs by replacing relatively expensive sugars with cheaper raw materials, such as short-chain alkanes. Herein, we rep...
متن کاملKetide Synthase (KS) Domain Prediction and Analysis of Iterative Type II PKS Gene in Marine Sponge-Associated Actinobacteria Producing Biosurfactants and Antimicrobial Agents
The important biological macromolecules, such as lipopeptide and glycolipid biosurfactant producing marine actinobacteria were analyzed and their potential linkage between type II polyketide synthase (PKS) genes was explored. A unique feature of type II PKS genes is their high amino acid (AA) sequence homology and conserved gene organization. These enzymes mediate the biosynthesis of polyketide...
متن کامل