Statistical models for neural encoding, decoding, and optimal stimulus design.
نویسندگان
چکیده
There are two basic problems in the statistical analysis of neural data. The "encoding" problem concerns how information is encoded in neural spike trains: can we predict the spike trains of a neuron (or population of neurons), given an arbitrary stimulus or observed motor response? Conversely, the "decoding" problem concerns how much information is in a spike train, in particular, how well can we estimate the stimulus that gave rise to the spike train? This chapter describes statistical model-based techniques that in some cases provide a unified solution to these two coding problems. These models can capture stimulus dependencies as well as spike history and interneuronal interaction effects in population spike trains, and are intimately related to biophysically based models of integrate-and-fire type. We describe flexible, powerful likelihood-based methods for fitting these encoding models and then for using the models to perform optimal decoding. Each of these (apparently quite difficult) tasks turn out to be highly computationally tractable, due to a key concavity property of the model likelihood. Finally, we return to the encoding problem to describe how to use these models to adaptively optimize the stimuli presented to the cell on a trial-by-trial basis, in order that we may infer the optimal model parameters as efficiently as possible.
منابع مشابه
Chapter 3 Neural Decoding
In chapters 1 and 2, we considered the problem of predicting neural responses to known stimuli. The nervous system faces the reverse problem, determining what is going on in the real world from neuronal spiking patterns. It is interesting to attempt such computations ourselves, using the responses of one or more neurons to identify a particular stimulus or to extract the value of a stimulus par...
متن کاملModel-Based Decoding, Information Estimation, and Change-Point Detection Techniques for Multineuron Spike Trains
One of the central problems in systems neuroscience is to understand how neural spike trains convey sensory information. Decoding methods, which provide an explicit means for reading out the information contained in neural spike responses, offer a powerful set of tools for studying the neural coding problem. Here we develop several decoding methods based on point-process neural encoding models,...
متن کاملBayesian Population Decoding of Spiking Neurons
The timing of action potentials in spiking neurons depends on the temporal dynamics of their inputs and contains information about temporal fluctuations in the stimulus. Leaky integrate-and-fire neurons constitute a popular class of encoding models, in which spike times depend directly on the temporal structure of the inputs. However, optimal decoding rules for these models have only been studi...
متن کاملPredictive Ensemble Decoding of Acoustical Features Explains Context-Dependent Receptive Fields
A primary goal of auditory neuroscience is to identify the sound features extracted and represented by auditory neurons. Linear encoding models, which describe neural responses as a function of the stimulus, have been primarily used for this purpose. Here, we provide theoretical arguments and experimental evidence in support of an alternative approach, based on decoding the stimulus from the ne...
متن کاملNeural stochastic codes, encoding and decoding
Understanding brain function, constructing computational models and engineering neural prosthetics require assessing two problems, namely encoding and decoding, but their relation remains controversial. For decades, the encoding problem has been shown to provide insight into the decoding problem, for example, by upper bounding the decoded information. However, here we show that this need not be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Progress in brain research
دوره 165 شماره
صفحات -
تاریخ انتشار 2007