Stability of Runge-Kutta-Pouzet methods for Volterra integro-differential equations with delays∗
نویسندگان
چکیده
This paper is concerned with the study of the stability of RungeKutta-Pouzet methods for Volterra integro-differential equations with delays. We are interested in the comparison between the analytical and numerical stability regions. First, we focus on scalar equations with real coefficients. It is proved that all Gauss-Pouzet methods can retain the asymptotic stability of the analytical solution. Then, we consider the multidimensional case. A new stability condition for the stability of the analytical solution is given. Under this condition, the asymptotic stability of Gauss-Pouzet methods is investigated.
منابع مشابه
Stability analysis of Runge–Kutta methods for nonlinear Volterra delay-integro-differential equations
This paper deals with the stability of Runge–Kutta methods for a class of stiff systems of nonlinear Volterra delay-integro-differential equations. Two classes of methods are considered: Runge–Kutta methods extended with a compound quadrature rule, and Runge– Kutta methods extended with a Pouzet type quadrature technique. Global and asymptotic stability criteria for both types of methods are de...
متن کاملStability Analysis of Runge-Kutta Methods for Nonlinear Neutral Volterra Delay-Integro-Differential Equations
This paper is concerned with the numerical stability of implicit Runge-Kutta methods for nonlinear neutral Volterra delay-integro-differential equations with constant delay. Using a Halanay inequality generalized by Liz and Trofimchuk, we give two sufficient conditions for the stability of the true solution to this class of equations. Runge-Kutta methods with compound quadrature rule are consid...
متن کاملNonlinear Stability and Convergence of Two-Step Runge-Kutta Methods for Volterra Delay Integro-Differential Equations
and Applied Analysis 3 The class of Runge-Kutta methods with CQ formula has been applied to delay-integro-differential equations by many authors (c.f. [18, 19]). For the CQ formula (9), we usually adopt the repeated trapezoidal rule, the repeated Simpson’s rule, or the repeated Newton-cotes rule, and so forth, denote η = max{?̃? 0 , ?̃? 1 , . . . , ?̃? m }. It should be pointed out that the adopte...
متن کاملNumerical Treatments for Volterra Delay Integro-differential Equations
This paper presents a new technique for numerical treatments of Volterra delay integro-differential equations that have many applications in biological and physical sciences. The technique is based on the mono-implicit Runge — Kutta method (described in [12]) for treating the differential part and the collocation method (using Boole’s quadrature rule) for treating the integral part. The efficie...
متن کاملExponential techniques and implicit Runge-Kutta methods for singularly-perturbed volterra integro-differential equations
Numerical experiments performed with an exponential finite difference method in equally-spaced and piecewise-uniform meshes for both the inner and the outer layers and with an implicit Runge-Kutta-Radau IIA method for the outer layer of singularly-perturbed Volterra integro-differential equations are reported. The exponential finite difference technique is based on piecewise linear approximatio...
متن کامل