Efficacy of anti-RON antibody Zt/g4-drug maytansinoid conjugation (Anti-RON ADC) as a novel therapeutics for targeted colorectal cancer therapy.
نویسندگان
چکیده
PURPOSE The receptor tyrosine kinase RON is critical in epithelial tumorigenesis and a drug target for cancer therapy. Here, we report the development and therapeutic efficacy of a novel anti-RON antibody Zt/g4-maytansinoid (DM1) conjugates for targeted colorectal cancer (CRC) therapy. EXPERIMENTAL DESIGN Zt/g4 (IgG1a/κ) was conjugated to DM1 via thioether linkage to form Zt/g4-DM1 with a drug-antibody ratio of 4:1. CRC cell lines expressing different levels of RON were tested in vitro to determine Zt/g4-DM1-induced RON endocytosis, cell-cycle arrest, and cytotoxicity. Efficacy of Zt/g4-DM1 in vivo was evaluated in mouse xenograft CRC tumor model. RESULTS Zt/g4-DM1 rapidly induced RON endocytosis, arrested cell cycle at G2-M phase, reduced cell viability, and caused massive cell death within 72 hours. In mouse xenograft CRC models, Zt/g4-DM1 at a single dose of 20 mg/kg body weight effectively delayed CRC cell-mediated tumor growth up to 20 days. In a multiple dose-ranging study with a five injection regimen, Zt/g4-DM1 inhibited more than 90% tumor growth at doses of 7, 10, and 15 mg/kg body weight. The minimal dose achieving 50% of tumor inhibition was approximately 5.0 mg/kg. The prepared Zt/g4-DM1 is stable at 37°C for up to 30 days. At 60 mg/kg, Zt/g4-DM1 had a moderate toxicity in vivo with an average of 12% reduction in mouse body weight. CONCLUSION Zt/g4-DM1 is highly effective in targeted inhibition of CRC cell-derived tumor growth in mouse xenograft models. This work provides the basis for development of humanized Zt/g4-DM1 for RON-targeted CRC therapy in the future.
منابع مشابه
Therapeutic evaluation of monoclonal antibody-maytansinoid conjugate as a model of RON-targeted drug delivery for pancreatic cancer treatment.
Aberrant expression of the RON receptor tyrosine kinase, a member of the MET proto-oncogene family, contributes significantly to pancreatic cancer tumorigenesis and chemoresistance. Here we validate RON as a target for pancreatic cancer therapy using a novel anti-RON antibody Zt/g4-drug maytansinoid conjugates (Zt/g4-DM1) as a model for RON-targeted drug delivery to kill pancreatic cancer cells...
متن کاملBiological evaluation of antibody-maytansinoid conjugates as a strategy of RON targeted drug delivery for treatment of non-small cell lung cancer.
BACKGROUND Aberrant expression of the RON receptor tyrosine kinase, a member of the MET proto-oncogene family, in breast cancer and non-small cell lung cancer (NSCLC) has therapeutic implication. Here we evaluated the efficacy of a novel anti-RON antibody-drug maytansinoid conjugate Zt/g4-DM1 for treatment of breast and NSCLC xenograft tumors in mouse models and explored a treatment strategy by...
متن کاملMonoclonal antibody Zt/g4 targeting RON receptor tyrosine kinase enhances chemosensitivity of bladder cancer cells to Epirubicin by promoting G1/S arrest and apoptosis
Epirubicin (EPI) is one of the most used intravesical chemotherapy agents after transurethral resection to non-muscle invasive bladder tumors (NMIBC) to prevent cancer recurrence and progression. However, even after resection of bladder tumors and intravesical chemotherapy, half of them will recur and progress. RON is a membrane tyrosine kinase receptor usually overexpressed in bladder cancer c...
متن کاملIMGN853, a Folate Receptor-α (FRα)-Targeting Antibody-Drug Conjugate, Exhibits Potent Targeted Antitumor Activity against FRα-Expressing Tumors.
A majority of ovarian and non-small cell lung adenocarcinoma cancers overexpress folate receptor α (FRα). Here, we report the development of an anti-FRα antibody-drug conjugate (ADC), consisting of a FRα-binding antibody attached to a highly potent maytansinoid that induces cell-cycle arrest and cell death by targeting microtubules. From screening a large panel of anti-FRα monoclonal antibodies...
متن کاملTruncated Hepatitis B virus like nanoparticles: A novel drug delivery platform for cancer therapy
Nowadays, Nano-sized drug delivery systems have been studied extensively for theirpotential in cancer therapy. Various drug nanocarriers are being developed including liposomes, micelles, and Virus like nanoparticles (VLNPs). VLNPs offer many advantages for developing smart drug delivery systems due to their precise and repeated structures and relatively large cargo capacities. Truncated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 20 23 شماره
صفحات -
تاریخ انتشار 2014