Random Lasso.
نویسندگان
چکیده
We propose a computationally intensive method, the random lasso method, for variable selection in linear models. The method consists of two major steps. In step 1, the lasso method is applied to many bootstrap samples, each using a set of randomly selected covariates. A measure of importance is yielded from this step for each covariate. In step 2, a similar procedure to the first step is implemented with the exception that for each bootstrap sample, a subset of covariates is randomly selected with unequal selection probabilities determined by the covariates' importance. Adaptive lasso may be used in the second step with weights determined by the importance measures. The final set of covariates and their coefficients are determined by averaging bootstrap results obtained from step 2. The proposed method alleviates some of the limitations of lasso, elastic-net and related methods noted especially in the context of microarray data analysis: it tends to remove highly correlated variables altogether or select them all, and maintains maximal flexibility in estimating their coefficients, particularly with different signs; the number of selected variables is no longer limited by the sample size; and the resulting prediction accuracy is competitive or superior compared to the alternatives. We illustrate the proposed method by extensive simulation studies. The proposed method is also applied to a Glioblastoma microarray data analysis.
منابع مشابه
Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملShrinkage estimation and variable selection in multiple regression models with random coefficient autoregressive errors
In this paper, we consider improved estimation strategies for the parameter vector in multiple regression models with first-order random coefficient autoregressive errors (RCAR(1)). We propose a shrinkage estimation strategy and implement variable selection methods such as lasso and adaptive lasso strategies. The simulation results reveal that the shrinkage estimators perform better than both l...
متن کاملExact Localization and Superresolution with Noisy Data and Random Illumination
This paper studies the problem of exact localization of multiple objects with noisy data. The crux of the proposed approach consists of random illumination. Two recovery methods are analyzed: the Lasso and the One-Step Thresholding (OST). For independent random probes, it is shown that both recovery methods can localize exactly s = O(m), up to a logarithmic factor, objects where m is the number...
متن کاملA note on adaptive group lasso
Group lasso is a natural extension of lasso and selects variables in a grouped manner. However, group lasso suffers from estimation inefficiency and selection inconsistency. To remedy these problems, we propose the adaptive group lasso method. We show theoretically that the new method is able to identify the true model consistently, and the resulting estimator can be as efficient as oracle. Num...
متن کاملRegression Performance of Group Lasso for Arbitrary Design Matrices
In many linear regression problems, explanatory variables are activated in groups or clusters; group lasso has been proposed for regression in such cases. This paper studies the nonasymptotic regression performance of group lasso using `1/`2 regularization for arbitrary (random or deterministic) design matrices. In particular, the paper establishes under a statistical prior on the set of nonzer...
متن کاملRobust Regression through the Huber’s criterion and adaptive lasso penalty
The Huber’s Criterion is a useful method for robust regression. The adaptive least absolute shrinkage and selection operator (lasso) is a popular technique for simultaneous estimation and variable selection. The adaptive weights in the adaptive lasso allow to have the oracle properties. In this paper we propose to combine the Huber’s criterion and adaptive penalty as lasso. This regression tech...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The annals of applied statistics
دوره 5 1 شماره
صفحات -
تاریخ انتشار 2011