Glucose-6-phosphate dehydrogenase. A transferred nuclear Overhauser enhancement study of NADP+ conformations in enzyme-coenzyme binary complexes.

نویسندگان

  • A M Gronenborn
  • G M Clore
  • L Hobbs
  • J Jeffery
چکیده

The conformation of NADP+ in glucose-6-phosphate-dehydrogenase--NADP+ binary complexes has been investigated using proton-proton transferred nuclear Overhauser enhancement measurements to determine interproton distance ratios between bound NADP+ protons. The enzymes from Saccharomyces cerevisiae (brewer's yeast and baker's yeast) and Hansenula jadinii (Candida utilis, Torula utilis) form binary complexes with NADP+ in which the glycosidic bond of the adenine moiety is in the anti conformation whereas that of the nicotinamide moiety exists as a syn (69-70%)/anti (30-40%) mixture. The enzymes have similar subunit sizes (Mr approximately 58 000) and it is shown that they bind NADP+ in essentially similar conformations. Inactivation of the baker's yeast enzyme with acetylsalicylic acid caused little if any alteration in the conformation of bound NADP+, and the presence of NADP+ during inactivation afforded very little protection to the enzyme. Inactivation rates were, however, lower in the presence of glucose 6-phosphate. It is concluded that the epsilon-amino group of the lysine residue that is acetylated during the inactivation reaction with acetylsalicylic acid is not necessary for binary complex formation between the enzyme and NADP+, but that it is situated in a part of the molecule affected by formation of the enzyme--glucose-6-phosphate complex. The implication of the findings for the catalytic process, and related evolutionary aspects, are discussed briefly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for the Essential Arginine and Histidine Residues in Catalytic Activity of Glucose 6-Phosphate Dehydrogenase from Streptomyces aureofaciens

Glucose 6-phosphate dehydrogenase (G6PD) was purified from Streptomyces aureofaciens and inactivated with butanedione and diethylpyrocarbonate. Incubation of the enzyme with butanedione resulted in a rapid activity loss (80%) within 5 min, followed by a slow phase using a molar ratio to enzyme concentration of 100. Fluorescence studies showed a conformational change in the butanedione-modified ...

متن کامل

REASSOCIATION AND REACTIVATION OF GLUCOSE 6-PHOSPHATE DEHYDROGENASE FROM STREPTOMYCES AUREOFACIENS AFTER DENATURATION BY 6 M UREA

Glucose 6-phosphate dehydrogenase (G6PD) from Streptomyces aureofaciens was purified and denatured in 6 M urea. Denaturation led to complete dissociation of the enzyme into its inactive monomers, 98% loss of the enzyme activity, about 30% decrease in the protein fluorescence and a 10 nm red shift in the emission maximum. Dilution of urea-denatured enzyme resulted in regaining of the enzyme acti...

متن کامل

A Time-dependent Transferred Nuclear Ovcrhauser Effect Study

The conformation of NAD + in tile sheep liver sorbitoi dehydrogenase-NAD + bi~lary complex has been investigated using time-dependent proton-proton transferred nuclear Overhauser enhancement measurements to determine interproton distance ratios and distances between bound NAD + protons. The conformation about both the adenosine and .nieotinamide riboside glycosidic bonds is anti, the conformati...

متن کامل

Structural studies of glucose-6-phosphate and NADP+ binding to human glucose-6-phosphate dehydrogenase.

Human glucose-6-phosphate dehydrogenase (G6PD) is NADP(+)-dependent and catalyses the first and rate-limiting step of the pentose phosphate shunt. Binary complexes of the human deletion mutant, DeltaG6PD, with glucose-6-phosphate and NADP(+) have been crystallized and their structures solved to 2.9 and 2.5 A, respectively. The structures are compared with the previously determined structure of ...

متن کامل

Improvement of thermal stability of Leuconostoc pseudomesenteroides glucose-6-phosphate dehydrogenase

Glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) from Leuconostoc pseudomesenteroides (the previously named: Leuconostoc mesenteroides) catalyzes the oxidation of glucose-6-phosphate in the presence of the coenzyme NADP or NAD. The enzyme is one of the industrially important enzymes and is applied in clinical settings. It is mainly useful in determinations of glucose and creatine kinase b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European journal of biochemistry

دوره 145 2  شماره 

صفحات  -

تاریخ انتشار 1984