Multidimensional K-Anonymity

نویسندگان

  • Kristen LeFevre
  • David J. DeWitt
  • Raghu Ramakrishnan
چکیده

K-Anonymity has been proposed as a mechanism for privacy protection in microdata publishing, and numerous recoding “models” have been considered for achieving kanonymity. This paper proposes a new multidimensional model, which provides an additional degree of flexibility not seen in previous (single-dimensional) approaches. Often this flexibility leads to higher-quality anonymizations, as measured both by general-purpose metrics, as well as more specific notions of query answerability. In this paper, we prove that optimal multidimensional anonymization is NP-hard (like previous k-anonymity models). However, we introduce a simple, scalable, greedy algorithm that produces anonymizations that are a constantfactor approximation of optimal. Experimental results show that this greedy algorithm frequently leads to more desirable anonymizations than two optimal exhaustive-search algorithms for single-dimensional models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Achieving Multidimensional K-Anonymity by a Greedy Approach

Protecting privacy in microdata publishing is K-Anonymity, Here recoding “models” have been considered for achieving k anonymity[1,2]. We proposes a new multidimensional model, which gives high flexibility. Often this flexibility leads to higher-quality anonymizations, as measured both by general-purpose metrics and more specific notions of query answerability. Like previous multidimensional mo...

متن کامل

Achieving Multidimensional K-Anonymity by a Greedy Approach

Protecting privacy in microdata publishing is K-Anonymity, Here recoding “models” have been considered for achieving k anonymity[1,2]. We proposes a new multidimensional model, which gives high flexibility. Often this flexibility leads to higher-quality anonymizations, as measured both by generalpurpose metrics and more specific notions of query answerability. Like previous multidimensional mod...

متن کامل

Multi-dimensional k-anonymity Based on Mapping for Protecting Privacy

Data release has privacy disclosure risk if not taking any protection policy. Although attributes that clearly identify individuals, such as Name, Identity Number, are generally removed or decrypted, attackers can still link these databases with other released database on attributes (Quasi-identifiers) to re-identify individual’s private information. K-anonymity is a significant method for priv...

متن کامل

Multi-dimensional K-anonymity based on Mapping for Protecting Privacy1

Data release has privacy disclosure risk if not taking any protection policy. Although attributes that clearly identify individuals, such as Name, Identity Number, are generally removed or decrypted, attackers can still link these databases with other released database on attributes (Quasi-identifiers) to re-identify individual’s private information. K-anonymity is a significant method for priv...

متن کامل

KANIS: Preserving k-Anonymity Over Distributed Data

In this paper we describe KANIS, a distributed system designed to preserve the privacy of multidimensional, hierarchical data that are dispersed over a network. While allowing for efficient storing, indexing and querying of the data, our system employs an adaptive scheme that automatically adjusts the level of indexing according to the privacy constrains: Efficient roll-up and drill-down operat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005