Electrochemical study of the SnO2 lithium-insertion anode using microperturbation techniques

نویسندگان

  • Chunsheng Wang
  • A. John Appleby
  • Frank E. Little
چکیده

A disk pressed from commercial SnO2 powder, sandwiched between two nickel screen current collectors, was used as a lithium-ion secondary anode. Its electrochemical lithium insertion–extraction behavior was investigated by galvanostatic charge–discharge and galvanostatic intermittent titration (GITT) using a microcurrent on one current collector. The transelectrode voltage was measured to monitor the transmissive resistance across the SnO2 electrode during the discharge–charge process. Special electrochemical impedance spectroscopy (EIS) protocols were used to investigate the kinetic and transmissive impedances during initial lithium insertion. Protocol B or C EIS, described in the text, give the local transmissive impedance near the operating current collector, while Protocol BVor CVgive the local transmissive impedance near the other current collector. The use of special EIS protocols showed that the inner transmissive impedance near the operating current collector side is higher than that near the other current collector. D 2002 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphology-controlled construction of hierarchical hollow hybrid SnO2@TiO2 nanocapsules with outstanding lithium storage

A novel synthesis containing microwave-assisted HCl etching reaction and precipitating reaction is employed to prepare hierarchical hollow SnO2@TiO2 nanocapsules for anode materials of Li-ion batteries. The intrinsic hollow nanostructure can shorten the lengths for both ionic and electronic transport, enlarge the electrode surface areas, and improving accommodation of the anode volume change du...

متن کامل

Facile synthesis of SnO2 nanocrystals anchored onto graphene nanosheets as anode materials for lithium-ion batteries.

A SnO2/graphene nanocomposite was prepared via a facile solvothermal process using stannous octoate as a Sn source. The as-prepared SnO2/graphene nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, a long cycle life and a good rate capability when used as an anode material for lithium-ion batteries.

متن کامل

Synthesis of SnO2 pillared carbon using long chain alkylamine grafted graphene oxide: an efficient anode material for lithium ion batteries.

With the objective of developing new advanced composite materials that can be used as anodes for lithium ion batteries (LIBs), herein we describe the synthesis of SnO2 pillared carbon using various alkylamine (hexylamine; dodecylamine and octadecylamine) grafted graphene oxides and butyl trichlorotin precursors followed by its calcination at 500 °C for 2 h. While the grafted alkylamine induces ...

متن کامل

Promotional role of B2O3 in enhancing hollow SnO2 anode performance for Li-ion batteries

A composite anode consisting of hollow SnO2 microspheres covered by glass-like B2O3 layers was prepared via a combined hydrothermal-impregnation method, which results in much improved electrochemical performance in lithium ion batteries, relative to pristine SnO2 anodes. The cycling and rate capabilities of the SnO2eB2O3 composite anodes were investigated as a function of B2O3 content. The bala...

متن کامل

Improved Mechanical and Electrochemical Properties of Artificial Graphite Anode Using Water-Based Binders in Lithium-Ion Batteries

In recent years, many studies have focused on the active materials of anodes to improve the performance of LIBs, while limited attention has been given to polymer binders, which act as inactive ingredients. However, polymer binders have amazing influence on the electrochemical performance of anodes. Herein, to investigate the binding performance between MCMB artificial graphite and the copper c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002