Bialgebra of specified graphs and external structures

نویسندگان

  • Dominique Manchon
  • Mohamed Belhaj
  • DOMINIQUE MANCHON
  • MOHAMED BELHAJ MOHAMED
چکیده

We construct a Hopf algebra structure on the space of specified Feynman graphs of a quantum field theory. We introduce a convolution product and a semigroup of characters of this Hopf algebra with values in some suitable commutative algebra taking momenta into account. We then implement the renormalization described by A. Connes and D. Kreimer in [2] and the Birkhoff decomposition for two renormalization schemes: the minimal subtraction scheme and the Taylor expansion scheme. MSC Classification: 05C90, 81T15, 16T05, 16T10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum E(2) Groups and Lie Bialgebra Structures

Lie bialgebra structures on e(2) are classified. For two Lie bialgebra structures which are not coboundaries (i.e. which are not determined by a classical r-matrix) we solve the cocycle condition, find the Lie-Poisson brackets and obtain quantum group relations. There is one to one correspondence between Lie bialgebra structures on e(2) and possible quantum deformations of U (e(2)) and E(2).

متن کامل

Lie Bialgebra Structures on Twodimensional Galilei Algebra and Their Lie–poisson Counterparts

All bialgebra structures on twodimensional Galilei algebra are classified. The corresponding Lie–Poisson structures on Galilei group are found. ∗Supported by the Lódź University Grant No.487

متن کامل

The Schrödinger-virasoro Type Lie Bialgebra: a Twisted Case

Abstract. In this paper we investigate Lie bialgebra structures on a twisted Schrödinger-Virasoro type algebra L. All Lie bialgebra structures on L are triangular coboundary, which is different from the relative result on the original Schrödinger-Virasoro type Lie algebra. In particular, we find for this Lie algebra that there are more hidden inner derivations from itself to L⊗L and we develop ...

متن کامل

Biproducts and Two-cocycle Twists of Hopf Algebras

Let H be a Hopf algebra with bijective antipode over a field k and suppose that R#H is a bi-product. Then R is a bialgebra in the Yetter–Drinfel’d category HYD. We describe the bialgebras (R#H) and (R#H) explicitly as bi-products R#Hop and R#H respectively where R is a bialgebra in H op HopYD and R o is a bialgebra in H o HoYD. We use our results to describe two-cocycle twist bialgebra structur...

متن کامل

From Entangled Codipterous Coalgebras to Coassociative Manifolds 1

In our previous works, we associated with each Hopf algebra, bialgebra and coassociative coalgebra, a directed graph. Describing how two coassociative coalgebras, via their directed graphs, can be entangled, leads to consider special coalgebras, called codipterous coalgebras. We yield a graphical interpretation of the notion of codipterous coalgebra and explain the necessity to study them. By g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013