Asymptotic and numerical modelling of flows in fractured porous media

نویسندگان

  • Philippe Angot
  • Franck Boyer
  • Florence Hubert
  • Philippe ANGOT
  • Franck BOYER
  • Florence HUBERT
چکیده

This study concerns some asymptotic models used to compute the flow outside and inside fractures in a bidimensional porous medium. The flow is governed by the Darcy law both in the fractures and in the porous matrix with large discontinuities in the permeability tensor. These fractures are supposed to have a small thickness with respect to the macroscopic length scale, so that we can asymptotically reduce them to immersed polygonal fault interfaces and the model finally consists in a coupling between a 2D elliptic problem and a 1D equation on the sharp interfaces modelling the fractures. A cell-centered finite volume scheme on general polygonal meshes fitting the interfaces is derived to solve the set of equations with the additional differential transmission conditions linking both pressure and normal velocity jumps through the interfaces. We prove the convergence of the FV scheme for any set of data and parameters of the models and derive existence and uniqueness of the solution to the asymptotic models proposed. The models are then numerically experimented for highly or partially immersed fractures. Some numerical results are reported showing different kinds of flows in the case of impermeable or partially/highly permeable fractures. The influence of the variation of the aperture of the fractures is also investigated. The numerical solutions of the asymptotic models are validated by comparing them to the solutions of the global Darcy model or to some analytic solutions. 1991 Mathematics Subject Classification. 76S05 74S10 35J25 35J20 65N15. The dates will be set by the publisher.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Homotopy Perturbation Method to Nonlinear Equations Describing Cocurrent and Countercurrent Imbibition in Fractured Porous Media

  In oil industry, spontaneous imbibition is an important phenomenon in recovery from fractured reservoirs which can be defined as spontaneous uptake of a wetting fluid into a porous solid. Spontaneous imbibition involves both cocurrent and countercurrent flows. When a matrix block is partially covered by water, oil recovery is dominated by cocurrent imbibition i.e. the production of non wettin...

متن کامل

Gradient discretization of hybrid dimensional Darcy flows in fractured porous media

This article deals with the discretization of hybrid dimensional Darcy flows in fractured porous media. These models couple the flow in the fractures represented as surfaces of codimension one with the flow in the surrounding matrix. The convergence analysis is carried out in the framework of gradient schemes which accounts for a large family of conforming and nonconforming discretizations. The...

متن کامل

Absolute Permeability Calculation by Direct Numerical Simulation in Porous Media

Simulating fluid flow at micro level is an ongoing problem. Simplified macroscopic flow models like Darcy’s law is unable to estimate fluid dynamic properties of porous media. The digital sample reconstruction by high resolution X-ray computed tomography scanning and fluid-dynamics simulation, together with the increasing power of super-computers, allow to carry out pore-scale simulations throu...

متن کامل

Experimental Investigation of the Permeability and Inertial Effect on Fluid Flow through Homogeneous Porous Media

The value of the permeability in fluid flow through porous media is important for process investigation. In low Reynolds number, the classic Darcy’s law is suitable for simulation of fluid flow. In this paper, an experimental study for evaluation of preformed fiber permeability has been done. Also, the deviations from the classical Darcy law by experimental and numerical simulation of the N...

متن کامل

Hydrodynamics in Porous Media: A Finite Volume Lattice Boltzmann Study

Fluid flow through porous media is of great importance for many natural systems, such as transport of groundwater flow, pollution transport and mineral processing. In this paper, we propose and validate a novel finite volume formulation of the lattice Boltzmann method for porous flows, based on the Brinkman–Forchheimer equation. The porous media effect is incorporated as a force term in the lat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008