Shape-Controlled Deterministic Assembly of Nanowires.
نویسندگان
چکیده
Large-scale, deterministic assembly of nanowires and nanotubes with rationally controlled geometries could expand the potential applications of one-dimensional nanomaterials in bottom-up integrated nanodevice arrays and circuits. Control of the positions of straight nanowires and nanotubes has been achieved using several assembly methods, although simultaneous control of position and geometry has not been realized. Here, we demonstrate a new concept combining simultaneous assembly and guided shaping to achieve large-scale, high-precision shape controlled deterministic assembly of nanowires. We lithographically pattern U-shaped trenches and then shear transfer nanowires to the patterned substrate wafers, where the trenches serve to define the positions and shapes of transferred nanowires. Studies using semicircular trenches defined by electron-beam lithography yielded U-shaped nanowires with radii of curvature defined by inner surface of the trenches. Wafer-scale deterministic assembly produced U-shaped nanowires for >430,000 sites with a yield of ∼90%. In addition, mechanistic studies and simulations demonstrate that shaping results in primarily elastic deformation of the nanowires and show clearly the diameter-dependent limits achievable for accessible forces. Last, this approach was used to assemble U-shaped three-dimensional nanowire field-effect transistor bioprobe arrays containing 200 individually addressable nanodevices. By combining the strengths of wafer-scale top-down fabrication with diverse and tunable properties of one-dimensional building blocks in novel structural configurations, shape-controlled deterministic nanowire assembly is expected to enable new applications in many areas including nanobioelectronics and nanophotonics.
منابع مشابه
A nanoscale combing technique for the large-scale assembly of highly aligned nanowires.
The controlled assembly of nanowires is a key challenge in the development of a range of bottom-up devices. Recent advances in the post-growth assembly of nanowires and carbon nanotubes have led to alignment ratios of 80-95% for a misalignment angle of ±5° (refs 5, 12, , 14) and allowed various multiwire devices to be fabricated. However, these methods still create a significant number of cross...
متن کاملA Simple and High Yield Solvothermal Synthesis of Uniform Silver Nanowires with Controllable Diameters
Silver nanowires were synthesized by solvothermal method through reducing silver nitrate (AgNO3) with ethylene glycol (EG) in the presence of polyvinylpyrrolidone (PVP). In order to prevent the agglomeration of Ag+ in the initial Ag seeds formation, sodium chloride (NaCl) was added into the solution to form AgCl colloids. By dissolving AgCl in the late stages, Ag+ ions were released into the so...
متن کاملShape-selective synthesis of II-VI semiconductor nanowires
Polar II–VI semiconductors can nucleate in complex shapes ranging from nanowires to nanoribbons, nanosaws and multipods. Here we demonstrate the deterministic and fully reproducible shape-selective growth of several morphologies of CdSe and ZnTe nanocrystals by a steady-state vapour transport process. A simple pressure-based precursor-flow shutter excludes any effects of temperature ramping, en...
متن کاملInvestigations of Magnetic Properties Through Electrodeposition Current and Controlled Cu Content in Pulse Electrodeposited CoFeCu Nanowires
CoFeCu nanowires were deposited by pulsed electrodeposition technique into the porous alumina templates by a two-step mild anodization technique, using the single-bath method. The electrodeposition was performed in a constant electrolyte while Cu constant was controlled by electrodeposition current. The electrodeposition current was 3.5, 4.25, 5 and 6 mA. The effect of electrodeposition current...
متن کاملControlled assembly of multi-segment nanowires by histidine-tagged peptides.
A facile technique was demonstrated for the controlled assembly and alignment of multi-segment nanowires using bioengineered polypeptides. An elastin-like-polypeptide (ELP)-based biopolymer consisting of a hexahistine cluster at each end (His(6)-ELP-His(6)) was generated and purified by taking advantage of the reversible phase transition property of ELP. The affinity between the His(6) domain o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 16 4 شماره
صفحات -
تاریخ انتشار 2016