Chronic activation of PPARα with fenofibrate reduces autophagic proteins in the liver of mice independent of FGF21

نویسندگان

  • Eunjung Jo
  • Songpei Li
  • Qingning Liang
  • Xinmei Zhang
  • Hao Wang
  • Terence P Herbert
  • Trisha A Jenkins
  • Aimin Xu
  • Ji-Ming Ye
چکیده

Autophagy is a catabolic mechanism to degrade cellular components to maintain cellular energy levels during starvation, a condition where PPARα may be activated. Here we report a reduced autophagic capacity in the liver following chronic activation of PPARα with fenofibrate (FB) in mice. Chronic administration of the PPARα agonist FB substantially reduced the levels of multiple autophagy proteins in the liver (Atg3, Agt4B, Atg5, Atg7 and beclin 1) which were associated with a decrease in the light chain LC3II/LC3I ratio and the accumulation of p62. This was concomitant with an increase in the expression of lipogenic proteins mSREBP1c, ACC, FAS and SCD1. These effects of FB were completely abolished in PPARα-/- mice but remained intact in mice with global deletion of FGF21, a key downstream mediator for PPARα-induced effects. Further studies showed that decreased the content of autophagy proteins by FB was associated with a significant reduction in the level of FoxO1, a transcriptional regulator of autophagic proteins, which occurred independently of both mTOR and Akt. These findings suggest that chronic stimulation of PPARα may suppress the autophagy capacity in the liver as a result of reduced content of a number of autophagy-associated proteins independent of FGF21.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasma mannose-binding lectin is stimulated by PPARα in humans.

The peroxisome proliferator activated receptor-α (PPARα) is a major transcriptional regulator of lipid metabolism in liver and represents the molecular target for hypolipidemic fibrate drugs. Effects of PPARα on lipid metabolism are partially mediated by circulating proteins such as FGF21 and ANGPTL4. The present study was undertaken to screen for and identify circulating proteins produced by h...

متن کامل

Concurrent Activation of Liver X Receptor and Peroxisome Proliferator-Activated Receptor Alpha Exacerbates Hepatic Steatosis in High Fat Diet-Induced Obese Mice

Liver X receptor (LXR) activation improves glucose homeostasis in obesity. This improvement, however, is associated with several side effects including hyperlipidemia and hepatic steatosis. Activation of peroxisome proliferator-activated receptor alpha (PPARα), on the other hand, increases fatty acid oxidation, leading to a reduction of hyperlipidemia. The objective of this study was to investi...

متن کامل

Transcriptome Analysis of K-877 (a Novel Selective PPARα Modulator (SPPARMα))-Regulated Genes in Primary Human Hepatocytes and the Mouse Liver.

AIM Selective PPARα modulators (SPPARMα) are under development for use as next-generation lipid lowering drugs. In the current study, to predict the pharmacological and toxicological effects of a novel SPPARMα K-877, comprehensive transcriptome analyses of K-877-treated primary human hepatocytes and mouse liver tissue were carried out. METHODS Total RNA was extracted from the K-877 treated pr...

متن کامل

FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting.

Hepatic gluconeogenesis is a main source of blood glucose during prolonged fasting and is orchestrated by endocrine and neural pathways. Here we show that the hepatocyte-secreted hormone fibroblast growth factor 21 (FGF21) induces fasting gluconeogenesis via the brain-liver axis. Prolonged fasting induces activation of the transcription factor peroxisome proliferator-activated receptor α (PPARα...

متن کامل

Peroxisome Proliferator-Activated Receptor α Activation Induces Hepatic Steatosis, Suggesting an Adverse Effect

Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic triglyceride accumulation, ranging from steatosis to steatohepatitis and cirrhosis. NAFLD is a risk factor for cardiovascular diseases and is associated with metabolic syndrome. Antihyperlipidemic drugs are recommended as part of the treatment for NAFLD patients. Although fibrates activate peroxisome proliferator-activated re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017