Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species.

نویسندگان

  • Tianzheng Yu
  • Shey-Shing Sheu
  • James L Robotham
  • Yisang Yoon
چکیده

AIMS One of the main causes of cardiovascular complications in diabetes is the hyperglycaemia-induced cell injury, and mitochondrial fission has been implicated in the apoptotic process. We investigated the role of mitochondrial fission in high glucose-induced cardiovascular cell injury. METHODS AND RESULTS We used several types of cultured mouse, rat, and bovine cells from the cardiovascular system, and evaluated mitochondrial morphology, reactive oxygen species (ROS) levels, and apoptotic parameters in sustained high glucose incubation. Adenoviral infection was used for the inhibition of the fission protein DLP1. We found that mitochondria were short and fragmented in cells incubated in sustained high glucose conditions. Under the same conditions, cellular ROS levels were high and cell death was increased. We demonstrated that the increased level of ROS causes mitochondrial permeability transition (MPT), phosphatidylserine exposure, cytochrome c release, and caspase activation in prolonged high glucose conditions. Importantly, maintaining tubular mitochondria by inhibiting mitochondrial fission in sustained high glucose conditions normalized cellular ROS levels and prevented the MPT and subsequent cell death. These results demonstrate that mitochondrial fragmentation is an upstream factor for ROS overproduction and cell death in prolonged high glucose conditions. CONCLUSION These findings indicate that the fission-mediated fragmentation of mitochondrial tubules is causally associated with enhanced production of mitochondrial ROS and cardiovascular cell injury in hyperglycaemic conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53

Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...

متن کامل

The role of local renin-angiotensin system on high glucose-induced cell toxicity, apoptosis and reactive oxygen species production in PC12 cells

Objective(s): Hyperglycemia, oxidative stress and apoptosis have key roles in pathogenesis of diabetic neuropathy. There are local renin-angiotensin systems (RASs) in different tissues such as neural tissue. Local RASs are involved in physiological and pathophysiological processes such as inflammation, proliferation and apoptosis. This study aimed to investigate the role of local renin-angioten...

متن کامل

Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology.

Increased production of mitochondrial reactive oxygen species (ROS) by hyperglycemia is recognized as a major cause of the clinical complications associated with diabetes and obesity [Brownlee, M. (2001) Nature 414, 813-820]. We observed that dynamic changes in mitochondrial morphology are associated with high glucose-induced overproduction of ROS. Mitochondria undergo rapid fragmentation with ...

متن کامل

Iron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species

Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...

متن کامل

Protective effect of Viola tricolor and Viola odorata extracts on serum/glucose deprivation-induced neurotoxicity: role of reactive oxygen species

Objective: Oxidative stress plays a key role in the pathophysiology of brain ischemia and neurodegenerative disorders.Previous studies indicated that Viola tricolor and Viola odorataare rich sources of antioxidants. This study aimed to determine whether these plants protect neurons against serum/glucose deprivation (SGD)-induced cell death in an in vitro model of ischemia and neurodegeneration....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 79 2  شماره 

صفحات  -

تاریخ انتشار 2008