Lagrangian finite element treatment of transient vibration/acoustics of biosolids immersed in fluids
نویسندگان
چکیده
Superposition principle is used to separate the incident acoustic wave from the scattered and radiated waves in a displacement-based finite element model. An absorbing boundary condition is applied to the perturbation part of the displacement. Linear constitutive equation allows for inhomogeneous, anisotropic materials, both fluids and solids. Displacement-based finite elements are used for all materials in the computational volume. Robust performance for materials with limited compressibility is achieved using assumed-strain nodally integrated simplex elements or incompatible-mode brick elements. A centereddifference time-stepping algorithm is formulated to handle general damping accurately and efficiently. Verification problems (response of empty steel cylinder immersed in water to a step plane wave, and scattering of harmonic plane waves from an elastic sphere) are discussed for assumed-strain simplex and for voxel-based brick finite element models. A voxel-based modeling scheme for complex biological geometries is described, and two illustrative results are presented from the bioacoustics application domain: reception of sound by the human ear and simulation of biosonar in beaked whales. Copyright 2007 John Wiley & Sons, Ltd.
منابع مشابه
Finite Element and Boundary Methods in Structural Acoustics and Vibration.
finite element and boundary methods in structural finite element and boundary methods in structural finite element and boundary methods in structural finite element and boundary methods in structural finite element and boundary methods in structural finite element and boundary methods in structural finite element and boundary methods in structural introduction to finite element vibration analys...
متن کاملDynamic Fracture Analysis Using an Uncoupled Arbitrary Lagrangian Eulerian Finite Element Formulation
This paper deals with the implementation of an efficient Arbitrary Lagrangian Eulerian (ALE) formulation for the three dimensional finite element modeling of mode I self-similar dynamic fracture process. Contrary to the remeshing technique, the presented algorithm can continuously advance the crack with the one mesh topology. The uncoupled approach is employed to treat the equations. So, each t...
متن کاملNumerical solution of unsteady flow on airfoils with vibrating local flexible membrane
Unsteady flow separation on the airfoils with local flexible membrane (LFM) has been investigated in transient and laminar flows by the finite volume element method. A unique feature of the present method compared with the common computational fluid dynamic softwares, especially ANSYS CFX, is the modification using the physical influence scheme in convection fluxes at cell surfaces. In contr...
متن کاملThe Finite Element Transient Structure Analysis of the Startup of the Sugarcane Harvester Transfer Case
The broken bearings and great noise and vibration often occurs with the small sugarcane harvester transfer case when it starts up working. To analyze the startup status of the transfer case conveniently and quickly, the finite element transient structure analysis is carried out. with virtual prototype technology to simulate the transfer case's startup dynamic process and measure the instantaneo...
متن کاملA magnetorheological fluid damper for robust vibration control of flexible rotor-bearing systems: A comparison between sliding mode and fuzzy approaches
Squeeze Film Dampers (SFD) are commonly used for passive vibration control of rotor-bearing systems. The Magnetorheological (MR) and Electrorheological (ER) fluids in SFDs give a varying damping characteristic to the bearing that can provide active control schemes for the rotor-bearing system. A common way to model an MR bearing is implementing the Bingham plastic model. Adding this model to th...
متن کامل