Genome‐wide gene expression dynamics of the fungal pathogen Dothistroma septosporum throughout its infection cycle of the gymnosperm host Pinus radiata

نویسندگان

  • Rosie E. Bradshaw
  • Yanan Guo
  • Andre D. Sim
  • M. Shahjahan Kabir
  • Pranav Chettri
  • Ibrahim K. Ozturk
  • Lukas Hunziker
  • Rebecca J. Ganley
  • Murray P. Cox
چکیده

We present genome-wide gene expression patterns as a time series through the infection cycle of the fungal pine needle blight pathogen, Dothistroma septosporum, as it invades its gymnosperm host, Pinus radiata. We determined the molecular changes at three stages of the disease cycle: epiphytic/biotrophic (early), initial necrosis (mid) and mature sporulating lesion (late). Over 1.7 billion combined plant and fungal reads were sequenced to obtain 3.2 million fungal-specific reads, which comprised as little as 0.1% of the sample reads early in infection. This enriched dataset shows that the initial biotrophic stage is characterized by the up-regulation of genes encoding fungal cell wall-modifying enzymes and signalling proteins. Later necrotrophic stages show the up-regulation of genes for secondary metabolism, putative effectors, oxidoreductases, transporters and starch degradation. This in-depth through-time transcriptomic study provides our first snapshot of the gene expression dynamics that characterize infection by this fungal pathogen in its gymnosperm host.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effector identification in the pine pathogen Dothistroma septosporum

Effectors are molecules produced by plant-associated organisms, such as fungal pathogens, that facilitate infection of specific plant hosts. Some effectors directly or indirectly suppress host defence responses while others help to mask the foreign invader from recognition by the plant. Plants can also recognise and respond to specific effectors to mount a resistance response. Thus the study of...

متن کامل

Population structure and diversity of an invasive pine needle pathogen reflects anthropogenic activity

Dothistroma septosporum is a haploid fungal pathogen that causes a serious needle blight disease of pines, particularly as an invasive alien species on Pinus radiata in the Southern Hemisphere. During the course of the last two decades, the pathogen has also incited unexpected epidemics on native and non-native pine hosts in the Northern Hemisphere. Although the biology and ecology of the patho...

متن کامل

Has Scots pine (Pinus sylvestris) co‐evolved with Dothistroma septosporum in Scotland? Evidence for spatial heterogeneity in the susceptibility of native provenances

Spatial heterogeneity in pathogen pressure leads to genetic variation in, and evolution of, disease-related traits among host populations. In contrast, hosts are expected to be highly susceptible to exotic pathogens as there has been no evolution of defence responses. Host response to pathogens can therefore be an indicator of a novel or endemic pathosystem. Currently, the most significant thre...

متن کامل

Substantial heritable variation for susceptibility to Dothistroma septosporum within populations of native British Scots pine (Pinus sylvestris)

The threat from pests and pathogens to native and commercially planted forest trees is unprecedented and expected to increase under climate change. The degree to which forests respond to threats from pathogens depends on their adaptive capacity, which is determined largely by genetically controlled variation in susceptibility of the individual trees within them and the heritability and evolvabi...

متن کامل

Functional Analysis of a Putative Dothistromin Toxin MFS Transporter Gene

Dothistromin is a non-host selective toxin produced by the pine needle pathogen Dothistroma septosporum. Dothistromin is not required for pathogenicity, but may have a role in competition and niche protection. To determine how D. septosporum tolerates its own toxin, a putative dothistromin transporter, dotC, was investigated. Studies with mutants lacking a functional dotC gene, overproducing do...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016