0 The Long - Time Dynamics of Dirac Particles in the Kerr - Newman Black Hole Geometry

نویسندگان

  • F. Finster
  • N. Kamran
  • J. Smoller
چکیده

We consider the Cauchy problem for the massive Dirac equation in the non-extreme Kerr-Newman geometry outside the event horizon. We derive an integral representation for the Dirac propagator involving the solutions of the ODEs which arise in Chandrasekhar's separation of variables. It is proved that for initial data with compact support, the probability of the Dirac particle to be in any compact region of space tends to zero as t goes to infinity. This means that the Dirac particle must either disappear in the black hole or escape to spatial infinity. If the energy of the Dirac particle is strictly larger than its rest mass and its angular momentum is bounded, the Dirac wave function decays rapidly in t, locally uniformly in x.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fe b 20 03 The Long - Time Dynamics of Dirac Particles in the Kerr - Newman Black Hole Geometry

We consider the Cauchy problem for the massive Dirac equation in the non-extreme Kerr-Newman geometry outside the event horizon. We derive an integral representation for the Dirac propagator involving the solutions of the ODEs which arise in Chandrasekhar's separation of variables. It is proved that for initial data in L ∞ loc near the event horizon with L 2 decay at infinity, the probability o...

متن کامل

v 2 2 8 Ju l 2 00 1 The Long - Time Dynamics of Dirac Particles in the Kerr - Newman Black Hole Geometry

We consider the Cauchy problem for the massive Dirac equation in the non-extreme Kerr-Newman geometry outside the event horizon. We derive an integral representation for the Dirac propagator involving the solutions of the ODEs which arise in Chandrasekhar's separation of variables. It is proved that for initial data in L ∞ loc near the event horizon with L 2 decay at infinity, the probability o...

متن کامل

The Long-Time Dynamics of Dirac Particles in the Kerr-Newman Black Hole Geometry

We consider the Cauchy problem for the massive Dirac equation in the non-extreme Kerr-Newman geometry outside the event horizon. We derive an integral representation for the Dirac propagator involving the solutions of the ODEs which arise in Chandrasekhar’s separation of variables. It is proved that for initial data in L∞ loc near the event horizon with L decay at infinity, the probability of t...

متن کامل

Decay Rates and Probability Estimates for Massive Dirac Particles in the Kerr–Newman Black Hole Geometry

The Cauchy problem is considered for the massive Dirac equation in the non-extreme Kerr–Newman geometry, for smooth initial data with compact support outside the event horizon and bounded angular momentum. We prove that the Dirac wave function decays in L∞loc at least at the rate t−5/6. For generic initial data, this rate of decay is sharp. We derive a formula for the probabilityp that the Dira...

متن کامل

Linear Waves in the Kerr Geometry: a Mathematical Voyage to Black Hole Physics

This paper gives a survey of wave dynamics in the Kerr spacetime geometry, the mathematical model of a rotating black hole in equilibrium. After a brief introduction to the Kerr metric, we review the separability properties of linear wave equations for fields of general spin s = 0, 1 2 , 1, 2, corresponding to scalar, Dirac, electromagnetic fields and linearized gravitational waves. We give res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003