Shaped pulse electric-field construction and interferometric characterization: The SPECIFIC method

نویسندگان

  • Matthew A. Coughlan
  • Mateusz Plewicki
  • Stefan M. Weber
  • Pamela Bowlan
  • Robert J Levis
چکیده

A method is reported for creating, generating, and measuring parametrically shaped pulses for time-bandwidth product >>5, which consists of a parametric pulse-shaping algorithm, a spatial light modulation system and a single shot interferometric characterization scheme (SEA TADPOLE) . The utilization of these tools marks the inception of a new method called SPECIFIC, shaped-pulse electric-field construction and interferometric characterization, capable of producing complex shaped laser pulses for coherent control experiments. OCIS codes: (140.3300) Laser beam shaping; (140.3510) Laser Fiber References and links 1. R. de Vivie-Riedle, and U. Troppmann, "Femtosecond lasers for quantum information technology," Chem. Rev. 107, 5082-5100 (2007). 2. R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001). 3. P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, "Femtosecond quantum control of molecular dynamics in the condensed phase," Phys. Chem. Chem. Phys. 9, 2470-2497 (2007). 4. C. Winterfeldt, C. Spielmann, and G. Gerber, "Colloquium: Optimal control of high-harmonic generation," Rev. Mod. Phys. 80, 117-140 (2008). 5. W. Wohlleben, B. T., J. L. Herek, and M. Motzkus, "Coherent control for spectroscopy and manipulation of biological dynamics," Chem. Phys. Chem 6, 850-857 (2005). 6. R. Trebino, Frequency Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, Boston, 2002). 7. T. Buckup, T. Lebold, A. Weigel, W. Wohlleben, and M. Motzkus, "Singlet versus triplet dynamics of [beta]carotene studied by quantum control spectroscopy," J. Photochem. Photobiol. A 180, 314-321 (2006). 8. J. Hauer, T. Buckup, and M. Motzkus, "Quantum control spectroscopy of vibrational modes: Comparison of control scenarios for ground and excited states in [beta]-carotene," Chem. Phys. 350, 220-229 (2008). 9. J. Hauer, H. Skenderovic, K.-L. Kompa, and M. Motzkus, "Enhancement of Raman modes by coherent control in [beta]-carotene," Chem. Phys. Lett. 421, 523-528 (2006). 10. T. Polack, D. Oron, and Y. Silberberg, "Control and measurement of a non-resonant Raman wavepucket using a single ultrashort pulse," Chem. Phys. Chem. 318, 163-169 (2005). 11. B. Von Vacano, J. Rehbinder, T. Buckup, and M. Motzkus, "Microanalytical nonlinear single-beam spectroscopy combining an unamplified femtosecond fibre laser, pulse shaping and interferometry," Appl. Phys. B 91, 213-217 (2008). 12. B. Von Vacano, J. Rehbinder, T. Buckup, and M. Motzkus, "Microanalytical nonlinear single-beam spectroscopy combining an unamplified femtosecond fibre laser, pulse shaping and interferometry," Applied Physics B: Lasers and Optics 91, 213-217 (2008). 13. T. Buckup, T. Lebold, A. Weigel, W. Wohlleben, and M. Motzkus, "Singlet versus triplet dynamics of [beta]carotene studied by quantum control spectroscopy," Journal of Photochemistry and Photobiology A: Chemistry Coherent Control of Photochemical and Photobiological Processes 180, 314-321 (2006). 14. J. Hauer, H. Skenderovic, K.-L. Kompa, and M. Motzkus, "Enhancement of Raman modes by coherent control in [beta]-carotene," Chemical Physics Letters 421, 523-528 (2006). 15. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000). 16. S. M. Weber, A. Lindinger, F. Vetter, M. Plewicki, A. Merli, and L. Woste, "Application of parametric time and frequency domain shaping," Eur. Phys. J. D 33, 39-42 (2005). 17. S. M. Weber, F. Weise, M. Plewicki, and A. Lindinger, "Interferometric generation of parametrically shaped polarization pulses," Appl. Opt. 46, 5987-5990 (2007). 18. M. M. Wefers, and K. A. Nelson, "Generation of high-fidelity programmable ultrafast optical waveforms," Opt. Lett. 20, 1047 (1995). 19. J. W. Wilson, P. Schlup, and R. A. Bartels, "Ultrafast phase and amplitude pulse shaping with a single, onedimensional, high-resolution phase mask," Opt. Express 15, 8979-8987 (2007). 20. L. Xu, E. Zeek, and R. Trebino, "Simulations of Frequency-Resolved Optical Gating for measuring very complex pulses," J. Opt. Soc. Am. B 25, A70-80 (2008). 21. L. Xu, E. Zeek, and R. Trebino, "Simulations of Frequency-Resolved Optical Gating for measuring very complex pulses," JOSA B 25, A70-80 (2008). 22. V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt.Lett. 29, 775-777 (2004). 23. B. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses," J. Opt. Soc. Am. B 23, 750-759 (2006). 24. C. Froehly, A. Lacourt, and J. C. Vienot, "Time impulse response and time frequency response of optical pupils: Experimental confirmations and applications," Nouvelle Revue d'Optique 4, 183-196 (1973). 25. L. Lepetit, G. Cheriaux, and M. Joffre, "Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy," J. Opt. Soc. Am. B 12, 2467 (1995). 26. C. Iaconis, and I. A. Walmsley, "Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses," Opt.Lett. 23, 792-794 (1998). 27. J. R. Birge, R. Ell, and F. X. Kartner, "Two-dimensional spectral shearing interferometry for few-cycle pulse characterization," Opt. Lett. 31, 2063-2065 (2006). 28. P. Bowlan, P. Gabolde, A. Schreenath, K. McGresham, and R. Trebino, "Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time," Opt. Express 14, 11892-11900 (2006). 29. J.-P. Geindre, P. Audebert, S. Rebibo, and J.-C. Cauthier, "Single-shot spectral interferometry with chirped pulses," Opt.Lett. 26, 1612-1614 (2001). 30. E. M. Kosik, A. S. Radunsky, I. A. Walmsley, and C. Dorrer, "Interferometric technique for measuring broadband ultrashort pulses at the sampling limit," Opt. Lett. 30, 326-328 (2005). 31. A. C. Kovaecs, K. Osvay, and Z. Bor, "Group-delay measurement on laser mirrors by spectrally resolved whitelight interferometry," Opt.Lett. 20, 788-790 (1995). 32. A. C. Kovaecs, K. Osvay, G. Kurdi, M. Gorbe, Klenbniczki, and Z. Bor, "Dispersion Control of a pulse stretcher-compressor system with two-dimensional spectral interferometry," Appl. Phys. B 80, 165-170 (2005). 33. D. Meshulach, D. Yelin, and Y. Silberberg, "Real-Time Spatial-Spectral Interference Measurements of Ultrashort Optical Pulses," J. Opt. Soc. Am. B 14, 2095-2098 (1997). 34. K. Misawa, and T. Kobayashi, "Femtosecond Sangac interferometer for phase spectroscopy," Opt. Lett. 20 (1995). 35. P. Bowlan, P. Gabolde, M. A. Coughlan, R. Trebino, and R. J. Levis, "Measuring the spatio-temporal electric field of ultra short pulses with high spatial and spectral resolution," J. Opt. Soc. Am. B 25, A81-92 (2008). 36. J. J. Field, C. G. Durfee, J. A. Squier, and S. Kane, "Quartic-phase-limited grism-based ultrashort pulse shaper," Opt. Lett. 32, 3101-3103 (2007). 37. J. J. Field, T. A. Planchon, W. Amir, C. G. Durfee, and J. A. Squier, "Characterization of a high efficiency, ultrashort pulse shaper incorporating a reflective 4096-element spatial light modulator," Opt. Commun. 278, 368-376 (2007). 38. J.-P. Geindre, P. Audebert, S. Rebibo, and J.-C. Cauthier, "Single-shot spectral interferometry with chirped pulses," Optics Letters 26, 1612-1614 (2001). 39. P. Bowlan, P. Gabolde, and R. Trebino, "Directly measuring the spatio-temporal electric field of focusing ultrashort pulses," Opt. Express 15, 10219-10230 (2007).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Cell Size and Shape on Electric Field Threshold and Critical Transmembrane Voltage for Electroporation

Introduction:  Electroporation  is  a  technique  for  increasing  the  permeability  of  the  cell  membrane  to  otherwise  non-permeate  molecules  due  to  an  external  electric  field.  This  permeability  enhancement  is  detectable if the induced transmembrane voltage becomes greater than a critical value which depends on the  pulse  strength  threshold.  In  this  study,  the  variabil...

متن کامل

Pulse retrieval algorithm for interferometric frequency-resolved optical gating based on differential evolution.

A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely, differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to pr...

متن کامل

Generation and characterization of polarization-shaped femtosecond laser pulses

We demonstrate the generation and complete characterization of femtosecond laser pulses which change their intensity, frequency, and light polarization almost arbitrarily within a single pulse employing the new technique of femtosecond polarization pulse shaping. Specifically, the degree of polarization ellipticity as well as the orientation of the elliptical principal axes can be varied as a f...

متن کامل

EFFECT OF ELECTRIC FIELD ON PD ACTIVITY AND DAMAGE INTO SOLID DIELECTRIC MATERIALS

Abstract – In this paper, the effect of applied electric field on the damage due to partial discharges activity into the surroundings dielectrics of a narrow channel encapsulated within the volume of a dielectric material is evaluated using a kinetic model based on Particle in Cell - Monte Carlo Collision (PIC-MCC) model. After application of an electric field across a dielectric material which...

متن کامل

Paired Pulse Basis Functions for the Method of Moments EFIE Solution of Electromagnetic Problems Involving Arbitrarily- shaped, Three-dimensional Dielectric Scatterers

A pair of basis functions is presented for the surface integral, method of moment solution of scattering by arbitrarily-shaped, three-dimensional dielectric bodies. Equivalent surface currents are represented by orthogonal unit pulse vectors in conjunction with triangular patch modeling. The electric field integral equation is employed with closed geometries for dielectric bodies; the method ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009