Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes.
نویسندگان
چکیده
Nonribosomal peptides (NRPs) are produced by NRP synthetase (NRPS) enzymes that function as molecular assembly lines. The modular architecture of NRPSs suggests that a domain responsible for activating a building block could be replaced with a domain from a foreign NRPS to create a chimeric assembly line that produces a new variant of a natural NRP. However, such chimeric NRPS modules are often heavily impaired, impeding efforts to create novel NRP variants by swapping domains from different modules or organisms. Here we show that impaired chimeric NRPSs can be functionally restored by directed evolution. Using rounds of mutagenesis coupled with in vivo screens for NRP production, we rapidly isolated variants of two different chimeric NRPSs with approximately 10-fold improvements in enzyme activity and product yield, including one that produces new derivatives of the potent NRP/polyketide antibiotic andrimid. Because functional restoration in these examples required only modest library sizes (10(3) to 10(4) clones) and three or fewer rounds of screening, our approach may be widely applicable even for NRPSs from genetically challenging hosts.
منابع مشابه
A Bi-Objective Approach to an Assembly Line Re-Balancing Problem: Model and Differential Evolution Algorithms
Assembly lines are special kinds of production systems which are of great importance in the industrial production of high quantity commodities. In many practical manufacturing systems, configuration of assembly lines is fixed and designing a new line may be incurred huge amount of costs and thereby it is not desirable for practitioners. When some changes related to market demand occur, it is wo...
متن کاملDirected evolution for drug and nucleic acid delivery.
Directed evolution is a term used to describe a variety of related techniques to rapidly evolve peptides and proteins into new forms that exhibit improved properties for specific applications. In this process, molecular biology techniques allow the creation of up to billions of mutants in a single experiment, which are then subjected to high-throughput screening to identify those with enhanced ...
متن کاملEvaluation of immune response to recombinant Bacillus anthracis LFD1-PA4 chimeric protein
Background: Anthrax is a particularly dangerous infectious disease that affects humans and livestock. Efficacious vaccines that can rapidly induce a long-term immune response are required to prevent anthrax infection in humans. Domains 4 and 1 of the protective antigen (PA) and lethal factor (LF), respectively, have very high antigenic properties. Aims: In this...
متن کاملDe novo design of biocatalysts.
The challenging field of de novo enzyme design is beginning to produce exciting results. The application of powerful computational methods to functional protein design has recently succeeded at engineering target activities. In addition, efforts in directed evolution continue to expand the transformations that can be accomplished by existing enzymes. The engineering of completely novel catalyti...
متن کاملDirected evolution of enzymes and biosynthetic pathways.
Directed evolution is an important tool for overcoming the limitations of natural enzymes as biocatalysts. Recent advances have focused on applying directed evolution to a variety of enzymes, such as epoxide hydrolase, glyphosate N-acetyltransferase, xylanase and phosphotriesterase, in order to improve their activity, selectivity, stability and solubility. The focus has also shifted to manipula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 29 شماره
صفحات -
تاریخ انتشار 2007