Learning population dynamics models from data and domain knowledge

نویسندگان

  • Sašo Džeroski
  • Ljupčo Todorovski
چکیده

This paper is concerned with integrating knowledge-based modeling or modeling from first principles, with data-driven or automated modeling of dynamic systems. The approach presented here includes methods for equation discovery: unlike mainstream system identification methods, which work under the assumption that the form of the equations is known, equation discovery systems explore a space of possible equation structures. We propose a formalism for representing knowledge about processes in population dynamics domains, and a method to transform such knowledge into an operational form that could be used by equation discovery systems. We also describe the extensions of the equation discovery system Lagramge necessary to incorporate this kind of knowledge in the process of equation discovery. © 2003 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Modeling Dynamic Systems with Efficient Ensembles of Process-Based Models

Ensembles are a well established machine learning paradigm, leading to accurate and robust models, predominantly applied to predictive modeling tasks. Ensemble models comprise a finite set of diverse predictive models whose combined output is expected to yield an improved predictive performance as compared to an individual model. In this paper, we propose a new method for learning ensembles of ...

متن کامل

Organizational Learning and Knowledge Spillover in Innovation Networks: Agent-Based Approach (Extending SKIN Framework)

In knowledge-based economy, knowledge has a public good and non-rivalry nature. Firms build their own knowledge stock not only by means of internal R&D and collaboration with partners, but also by means of previously spilled over knowledge of other firms and public research laboratories (such as universities). Firms based on their absorptive capacity, and level of intra-industry and extra-indus...

متن کامل

The Intellectual Structure of Knowledge in the Field of Distance Education Using the Co-Word analyses

Background: Co- word analysis is one of the content analysis methods used in scientometric studies and mapping the scientific structure of various fields. The purpose of the present research is to map the structure of distance education using the co-word analysis. Methods: The research method is content analysis using co- word analysis. The research population are 31607 documents indexed in the...

متن کامل

Pareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms

A multi-objective optimization (MOO) of two-element wing models with morphing flap by using computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) and drag ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003