Probability Estimates of Extreme Temperature Events: Stochastic Modelling Approach vs. Extreme Value Distributions
نویسندگان
چکیده
The paper deals with the probability estimates of temperature extremes (annual temperature maxima and heat waves) in the Czech Republic. Two statistical methods of probability estimations are compared; one based on the stochastic modelling of time series of the daily maximum temperature (TMAX) using the first-order autoregressive (AR(1)) model, the other consisting in fitting the extreme value distribution to the sample of annual temperature peaks. The AR(1) model is able to reproduce the main characteristics of heat waves, though the estimated probabilities should be treated as upper limits because of deficiencies in simulating the temperature variability inherent to the AR(1) model. Theoretical extreme value distributions do not yield good results when applied to maximum annual lengths of heat waves and periods of tropical days (TMAX ≥ 30°C), but it is the best method for estimating the probability and recurrence time of annual one-day temperature extremes. However, there are some difficulties in the application: the use of the two-parameter Gumbel distribution and the three-parameter generalized extreme value (GEV) distribution may lead to different results, particularly for long return periods. The resulting values also depend on the chosen procedure of parameter estimation. Based on our findings, the shape parameter testing for the GEV distribution and the L moments technique for parameter estimation may be recommended. The application of the appropriate statistical tools indicates that the heat wave and particularly the long period of consecutive tropical days in 1994 were probably a more rare event than the record-breaking temperatures in July 1983 exceeding 40°C. An improvement of the probability estimate of the 1994 heat wave may be expected from a more sophisticated model of the temperature series. Keywo rd s : autoregressive model, extreme value distribution, L moments, maximum likelihood method, annual temperature maximum, heat wave, 1994 heat wave * Boční II/1401, 141 31 Prague 4, Czech Republic ([email protected])
منابع مشابه
Extreme Value Distributions
Extreme Value distributions arise as limiting distributions for maximums or minimums (extreme values) of a sample of independent, identically distributed random variables, as the sample size increases. Extreme Value Theory (EVT) is the theory of modelling and measuring events which occur with very small probability. This implies its usefulness in risk modelling as risky events per definition ha...
متن کاملNonparametric Spatial Models for Extremes: Application to Extreme Temperature
Estimating the probability of extreme temperature events is difficult because of limited records across time and the need to extrapolate the distributions of these events, as opposed to just the mean, to locations where observations are not available. Another related issue is the need to characterize the uncertainty in the estimated probability of extreme events at different locations. Although...
متن کاملNonparametric Spatial Models for Extremes: Application to Extreme Temperature Data.
Estimating the probability of extreme temperature events is difficult because of limited records across time and the need to extrapolate the distributions of these events, as opposed to just the mean, to locations where observations are not available. Another related issue is the need to characterize the uncertainty in the estimated probability of extreme events at different locations. Although...
متن کاملPhysically-based extreme flood frequency with stochastic storm transposition and paleoflood data on large watersheds
Traditionally, deterministic flood procedures such as the Probable Maximum Flood have been used for critical infrastructure design. Some Federal agencies now use hydrologic risk analysis to assess potential impacts of extreme events on existing structures such as large dams. Extreme flood hazard estimates and distributions are needed for these efforts, with very low annual exceedance probabilit...
متن کاملNonparametric Spatial Models for Extremes:
Estimating the probability of extreme temperature events is difficult because of limited records across time and the need to extrapolate the distributions of these events, as opposed to just the mean, to locations where observations are not available. Another related issue is the need to characterize the uncertainty in the estimated probability of extreme events at different locations. Although...
متن کامل