Structural stability of an enzyme biocatalyst.

نویسندگان

  • P A Dalby
  • J P Aucamp
  • R George
  • R J Martinez-Torres
چکیده

TK (transketolase) undergoes inactivation during biocatalytic processes due to oxidation, substrate and product inhibition, reactivity of aldehyde substrates, irreversible inactivation at low pH, and dissociation of cofactors. However, the contribution of protein denaturation to each of these mechanisms is not fully understood. The urea-induced reversible denaturations of the apo- and holo-enzyme forms of the homodimeric Escherichia coli TK have been characterized, along with the reconstitution of holo-TK from the apoenzyme and cofactors. An unusual cofactor-bound yet inactive intermediate occurs on both the reconstitution and holo-TK denaturation pathways. The denaturation pathways of the holo- and apoenzymes converge at a second intermediate consisting of a partially denatured apo-homodimer. Preliminary investigation of the denaturation under oxidizing conditions reveals further complexity in the mechanisms of enzyme deactivation that occur under biocatalytic conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Textural and Structural Characterizations of Mesoporous Chitosan Beads for Immobilization of Alpha-Amylase: Diffusivity and Sustainability of Biocatalyst

In the present study, textural and structural characterizations of chitosan bead for immobilization of alpha amylase were studied in detail by N2 adsorption–desorption, Microspore Analysis (MP), Barrett–Joyner–Halenda (BJH) plots and Field Emission Scanning Electron Microscope (FESEM) observations. Pore structure observation revealed chemical activation of chitosan bead by glutaralde...

متن کامل

Composite nanolayer photocatalyst-biocatalyst Rhodococcus erythropolis R1 for desulfurization of dibenzothiophene

A nanolayer of composite and Rhodococcus erythropolis biocatalyst was studied for the first time for desulfurization of dibenzothiophene as a model sulfur compound and its performance was compared with that of composite and R. erythropolis alone. The nanolayer of composite was synthesized by sol-gel method from ferrous oxalate and zinc oxalate precursors coated on glass by spin coating techniqu...

متن کامل

Microscopic monitoring provides information on structure and properties during biocatalyst immobilization.

Enzymes have a wide range of applications in different industries owing to their high specificity and efficiency. Immobilization is often used to improve biocatalyst properties, operational stability, and reusability. However, changes in the structure of biocatalysts during immobilization and under process conditions are still largely uncertain. Here, three microscopy techniques - bright-field,...

متن کامل

Directed evolution of a novel N-carbamylase/D-hydantoinase fusion enzyme for functional expression with enhanced stability.

Bifunctional enzymes find a wide application as a monitoring facility and a potential biocatalyst in molecular biology and biotechnology. Recombination of natural enzymes to a bifunctional fusion offers valuable tools, but the functional and structural instability of artificial fusion enzymes remains to be solved. Based on structural traits of microbial D-hydantoinase, we attempted to construct...

متن کامل

Enzyme stabilization by covalent binding in nanoporous sol-gel glass for nonaqueous biocatalysis.

A unique nanoporous sol-gel glass possessing a highly ordered porous structure (with a pore size of 153 A in diameter) was examined for use as a support material for enzyme immobilization. A model enzyme, alpha-chymotrypsin, was efficiently bound onto the glass via a bifunctional ligand, trimethoxysilylpropanal, with an active enzyme loading of 0.54 wt%. The glass-bound chymotrypsin exhibited g...

متن کامل

Acetylcholinesterase immobilization and characterization, and comparison of the activity of the porous silicon-immobilized enzyme with its free counterpart.

A successful prescription is presented for acetylcholinesterase physically adsorbed on to a mesoporous silicon surface, with a promising hydrolytic response towards acetylthiocholine iodide. The catalytic behaviour of the immobilized enzyme was assessed by spectrophotometric bioassay using neostigmine methyl sulfate as a standard acetycholinesterase inhibitor. The surface modification was studi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 35 Pt 6  شماره 

صفحات  -

تاریخ انتشار 2007