CrNx Films Prepared by DC Magnetron Sputtering and High-Power Pulsed Magnetron Sputtering: A Comparative Study
نویسندگان
چکیده
CrNx (0 ≤ x ≤ 0.91) films synthesized using highpower pulsed magnetron sputtering, also known as high-power impulse magnetron sputtering (HiPIMS), have been compared with those made by conventional direct-current (dc) magnetron sputtering (DCMS) operated at the same average power. The HiPIMS deposition rate relative to the DCMS rate was found to decrease linearly with increasing emission strength from the Cr ions relative to Cr neutrals, in agreement with the predictions of the target-pathway model. The low deposition rate in HiPIMS is thus a direct consequence of the high ionization level (∼56%) of the target material and effective capturing of Cr ions by the cathode potential. Although the HiPIMS deposition rate did not exceed 40% of the DCMS rate, the drop in the relative deposition rate upon increasing the N2-to-Ar flow ratio, fN2/Ar , was found to be similar for both sputtering techniques. Films prepared by HiPIMS contained similar amounts of atomic nitrogen as the dc-sputtered samples grown at the same fN2/Ar , indicating that the nitride formation at the substrate takes place mostly during the time period of the high-power pulses, and the N2 uptake between the pulses is negligible. The microstructure evolution in the two types of CrNx films, however, differed clearly from each other. A combination of a high substrate bias and a high flux of doubly charged Cr ions present during the HiPIMS discharge led to a disruption of the grain growth and renucleation, which resulted in column-free films with nanosized grains not observed in the conventional DCMS-based process. The comparison of nanoindentation hardness as a function of fN2/Ar revealed superior properties of HiPIMS-sputtered films in the entire range of gas compositions.
منابع مشابه
The Effect of Substrate on Structural and Electrical Properties of Cu3N Thin Film by DC Reactive Magnetron Sputtering
The aim of this paper is to study the effect of substrate on the Cu3N thin films. At first Cu3N thin films are prepared using DC magnetron sputtering system. Then structural properties, surface roughness, and electrical resistance are studied using X-ray diffraction (XRD), the atomic force microscope (AFM) and four-point probe techniques respectively. Finally, the results are investigated and c...
متن کاملEffect of Thickness on Properties of Copper Thin Films Growth on Glass by DC Planar Magnetron Sputtering
Copper thin films with nano-scale structure have numerous applications in modern technology. In this work, Cu thin films with different thicknesses from 50–220 nm have been deposited on glass substrate by DC magnetron sputtering technique at room temperature in pure Ar gas. The sputtering time was considered in 4, 8, 12 and 16 min, respectively. The thickness effect on the structural, mo...
متن کاملDeposition of Al/Cu Multilayer By Double Targets Cylindrical DC Magnetron Sputtering System
A cylindrical direct current magnetron sputtering coater with two targets for deposition of multilayer thin films and cermet solar selective surfaces has been constructed. The substrate holder was able to rotate around the target for obtaining the uniform layer and separated multilayer phases. The Al/ Cu multilayer film was deposited on the glass substrate at the following conditions: Working g...
متن کاملMid-Frequency Dual Magnetron Reactive Co-Sputtering for Deposition of Customized Index Optical Films
Reactive co-sputtering is a means to create films of customized or graded index of refraction. This gives the optical coating designer new options, and enables practical realization of new classes of coatings. Two neighboring targets may be sputtered such that material from both targets and reactive gas are incident on the workpiece, depositing a film consisting of a compound. For example, if o...
متن کاملThe effect of sputtering RF power on structural, optical and electrical properties of CuO and CuO2 thin films
In this paper, the RF power change effect on the structural, optical and electrical properties of CuO thin films prepared by RF reactive magnetron sputtering deposited on glass substrates are studied. At first, the thin films are prepared at 150, 280, 310 and 340W respectively. Then, the films are characterized by XRD, AFM, Uv-visible and four-point probe analysis respectively. The results show...
متن کامل