Improving the Exploitation of Fluid in Elastomeric Polymeric Isolator
نویسنده
چکیده
Elastomeric polymer foam has been used widely in the automotive industry, especially for isolating unwanted vibrations. Such material is able to absorb unwanted vibration due to its combination of elastic and viscous properties. However, the ‘creep effect’, poor stress distribution and susceptibility to high temperatures are the main disadvantages of such a system. In this study, improvements in the performance of elastomeric foam as a vibration isolator were investigated using the concept of Foam Filled Fluid (FFFluid). In FFFluid devices, the foam takes the form of capsule shapes, and is mixed with viscous fluid, while the mixture is contained in a closed vessel. When the FFFluid isolator is affected by vibrations, energy is absorbed, due to the elastic strain of the foam. As the foam is compressed, there is also movement of the fluid, which contributes to further energy absorption as the fluid shears. Also, and dependent on the design adopted, the packaging could also attenuate vibration through energy absorption via friction and/or elastic strain. The present study focuses on the advantages of the FFFluid concept over the dry polymeric foam in the role of vibration isolation. This comparative study between the performance of dry foam and the FFFluid was made according to experimental procedures. The paper concludes by evaluating the performance of the FFFluid isolator in the suspension system of a light vehicle. One outcome of this research is that the FFFluid may preferable over elastomer isolators in certain applications, as it enables a reduction in the effects of high temperatures and of ‘creep effects’, thereby increasing the reliability and load distribution. The stiffness coefficient of the system has increased about 60% by using an FFFluid sample. The technology represented by the FFFluid is therefore considered by this research suitable for application in the suspension system of a light vehicle. Keywords—Anti-vibration devices, dry foam, FFFluid.
منابع مشابه
Analysis of Fiber-Reinforced Elastomeric Isolators
An analysis is given for the mechanical characteristics of multilayer elastomeric isolation bearings where the reinforcing elements-normally steel plates-are replaced by a fiber reinforcement. The fiber-reinforced isolator, in contrast to the steel-reinforced isolator (which is assumed to be rigid both in extension and flexure), is assumed to be flexible in extension, but completely without fle...
متن کاملImproving seismic performance of elevated cylindrical water storage tanks using nonlinear isolators incorporating liquid–structure interaction
Pervasive construction of elevated liquid tanks as the most important sources for urban hygienic water, and their failure under earthquake, highlighs the necessity for research toward new passive control devices. Design and use of base-isolation systems for elevated liquid tanks is propounded as a novel seismic engineering technology. To date, no special examination has been discussed in relati...
متن کاملModeling of a new semi-active/passive magnetorheological elastomer isolator
This paper presents theoretical modeling of a new magnetorheological elastomer (MRE) base isolator and its performance for vibration control. The elastomeric element of the traditional steel–rubber base isolator is modified to a composite layer of passive elastomer and MRE which makes the isolator controllable with respect to its stiffness and damping. The proposed variable stiffness and dampin...
متن کاملThe Stochastic Response of Asymmetric Base Isolated Buildings
The coupled lateral–torsional stochastic response of an asymmetric one-storey base isolated building to earthquake excitation is presented. The stochastic model of the 1940 El-Centro earthquake, which preserves the non-stationary evolution of the amplitude and frequency content of the ground acceleration, is used as earthquake excitation. The base isolator consists of an array of elastomeric be...
متن کاملVariable stiffness and damping MR isolator
This paper presents the development of a magnetorheological (MR) fluid-based variable stiffness and damping isolator for vibration suppressions. The MR fluid isolator used a sole MR control unit to achieve the variable stiffness and damping in stepless and relative large scope. A mathematical model of the isolator was derived, and a prototype of the MR fluid isolator was fabricated and its dyna...
متن کامل