Accurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry.

نویسندگان

  • Bincheng Li
  • Boris Majaron
  • John A Viator
  • Thomas E Milner
  • Zhongping Chen
  • Yonghua Zhao
  • Hongwu Ren
  • J Stuart Nelson
چکیده

We report on application of pulsed photothermal radiometry (PPTR) to determine the depth of port wine stain (PWS) blood vessels in human skin. When blood vessels are deep in the PWS skin (>100 microm), conventional PPTR depth profiling can be used to determine PWS depth with sufficient accuracy. When blood vessels are close or partially overlap the epidermal melanin layer, a modified PPTR technique using two-wavelength (585 and 600 nm) excitation is a superior method to determine PWS depth. A direct difference approach in which PWS depth is determined from a weighted difference of temperature profiles reconstructed independently from two-wavelength excitation is demonstrated to be appropriate for a wider range of PWS patients with various blood volume fractions, blood vessel sizes, and depth distribution. The most superficial PWS depths determined in vivo by PPTR are in good agreement with those measured using optical Doppler tomography (ODT).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hand-held pulsed photothermal radiometry system to estimate epidermal temperature rise during laser therapy.

BACKGROUND/PURPOSE During laser therapy of port wine stain (PWS) birthmarks in human skin, measurement of the epidermal temperature rise (DeltaT(epi)) is important to determine the maximal permissible light dose. In order to measure DeltaT(epi) on a specific PWS skin site, we developed an AC-coupled hand-held pulsed photothermal radiometry (PPTR) system, which overcomes the in vivo measurement ...

متن کامل

Computational model to evaluate port wine stain depth profiling using pulsed photothermal radiometry.

We report on development of an optical-thermal model to evaluate the use of pulsed photothermal radiometry (PPTR) for depth profiling of port wine stain (PWS) skin. In the model, digitized histology sections of a PWS biopsy were used as the input skin geometry. Laser induced temperature profiles were reconstructed from simulated PPTR signals by applying an iterative, non-negatively constrained ...

متن کامل

Thermal depth profiling of vascular lesions: automated regularization of reconstruction algorithms.

Pulsed photo-thermal radiometry (PPTR) is a non-invasive, non-contact diagnostic technique used to locate cutaneous chromophores such as melanin (epidermis) and hemoglobin (vascular structures). Clinical utility of PPTR is limited because it typically requires trained user intervention to regularize the inversion solution. Herein, the feasibility of automated regularization was studied. A secon...

متن کامل

Characterization of Laser Tattoo Removal Treatment Using Pulsed Photothermal Radiometry

Pulsed photothermal radiometry (PPTR) enables noninvasive determination of temperature depth profiles induced in strongly scattering biological tissues and organs, including human skin, by pulsed laser irradiation. In the present study, we evaluate the potential of this technique for objective characterization of a laser tattoo removal procedure. The study involved 5 healthy volunteers (age 20–...

متن کامل

Histochemical Evaluation of the Vessel Wall Destruction and Selectivity After Treatment with Intense Pulsed Light in Capillary Malformations.

BACKGROUND Among the different approaches for improving the effectiveness in the treatment of Capillary Malformations type Port Wine Stain (CM type PWS) are the intense pulsed light sources. There are few clinical studies prove useful in the treatment of CM. Furthermore, no studies have been published yet demonstrating the histological effects of IPL in CM. OBJECTIVES To assess the histologic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 9 5  شماره 

صفحات  -

تاریخ انتشار 2004